Bifractality in the one-dimensional Wolf-Villain model

被引:1
作者
Luis, Edwin E. Mozo [1 ]
Ferreira, Silvio C. [2 ,3 ]
de Assis, Thiago A. [1 ,4 ]
机构
[1] Univ Fed Fluminense, Inst Fis, Ave Litoranea S-N, BR-24210340 Niteroi, RJ, Brazil
[2] Univ Fed Vicosa, Dept Fis, BR-36570900 Vicosa, MG, Brazil
[3] Natl Inst Sci & Technol Complex Syst, BR-22290180 Rio De Janeiro, Brazil
[4] Univ Fed Bahia, Inst Fis, Campus Univ Federacao,Rua Barao Jeremoabo S-N, BR-40170115 Salvador, BA, Brazil
关键词
CRITICAL EXPONENTS; GROWTH-MODELS; DAS-SARMA; UNIVERSALITY; TAMBORENEA; MORPHOLOGY; CONTINUUM; EQUATIONS; EVOLUTION; SURFACES;
D O I
10.1103/PhysRevE.110.L012801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a multifractal optimal detrended fluctuation analysis to study the scaling properties of the onedimensional Wolf-Villain (WV) model for surface growth. This model produces coarsened surface morphologies for long timescales (up to 109 monolayers) and its universality class remains an open problem. Our results for the multifractal exponent tau(q) reveal an effective local roughness exponent consistent with a transient given by the molecular beam epitaxy (MBE) growth regime and Edwards-Wilkinson (EW) universality class for negative and positive q values, respectively. Therefore, although the results corroborate that long-wavelength fluctuations belong to the EW class in the hydrodynamic limit, as conjectured in the recent literature, a bifractal signature of the WV model with an MBE regime at short wavelengths was observed.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Normal dynamic scaling in the class of the nonlinear molecular-beam-epitaxy equation [J].
Aarao Reis, F. D. A. .
PHYSICAL REVIEW E, 2013, 88 (02)
[2]  
[Anonymous], 2002, Material Science of Thin Films: Deposition and Structure
[3]  
aps, About us, DOI [10.1103/PhysRevE.110.L012801, DOI 10.1103/PHYSREVE.110.L012801]
[4]  
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
[5]   Scaling of local interface width of statistical growth models [J].
Chame, A ;
Reis, FDAA .
SURFACE SCIENCE, 2004, 553 (1-3) :145-154
[6]   Finite-size effects on the growth models of Das Sarma and Tamborenea and Wolf and Villain [J].
Costa, BS ;
Euzébio, JAR ;
Reis, FDAA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 328 (1-2) :193-204
[7]   Universality class of discrete solid-on-solid limited mobility nonequilibrium growth models for kinetic surface roughening [J].
Das Sarma, S ;
Chatraphorn, PP ;
Toroczkai, Z .
PHYSICAL REVIEW E, 2002, 65 (03)
[8]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[9]   Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds [J].
Evans, J. W. ;
Thiel, P. A. ;
Bartelt, M. C. .
SURFACE SCIENCE REPORTS, 2006, 61 (1-2) :1-128
[10]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81