Noninvasive Isocitrate Dehydrogenase 1 Status Prediction in Grade II/III Glioma Based on Magnetic Resonance Images: A Transfer Learning Strategy

被引:0
作者
Zhang, Jin [1 ]
Wang, Yuyao [1 ]
Yang, Yang [1 ]
Han, Yu [1 ]
Yu, Ying [1 ]
Hu, Yuchuan [1 ]
Liang, Shouheng [1 ]
Sun, Qian [1 ]
Shang, Danting [1 ]
Bi, Jiajun [2 ]
Cui, Guangbin [1 ]
Yan, Linfeng [1 ]
机构
[1] Fourth Mil Med Univ, Air Force Med Univ, Tangdu Hosp, Dept Radiol & Funct & Mol Imaging,Key Lab Shaanxi, 569 Xinsi Rd, Xian 710038, Shaanxi, Peoples R China
[2] Fourth Mil Med Univ, Air Force Med Univ, Coll Basic Med, Xian, Shaanxi, Peoples R China
关键词
isocitrate dehydrogenase 1; IDH1; convolutional neural network; transfer learning; image fusion; glioma; CONVOLUTIONAL NEURAL-NETWORK; IDH; CLASSIFICATION; CANCER; MANAGEMENT; MUTATIONS;
D O I
10.1097/RCT.0000000000001575
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: The aim of this study was to evaluate transfer learning combined with various convolutional neural networks (TL-CNNs) in predicting isocitrate dehydrogenase 1 (IDH1) status of grade II/III gliomas. Methods: Grade II/III glioma patients diagnosed at the Tangdu Hospital (August 2009 to May 2017) were retrospectively enrolled, including 54 patients with IDH1 mutant and 56 patients with wild-type IDH1. Convolutional neural networks, AlexNet, GoogLeNet, ResNet, and VGGNet were fine-tuned with T2-weighted imaging (T2WI), fluid attenuation inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (T1CE) images. The single-modal networks were integrated with averaged sigmoid probabilities, logistic regression, and support vector machine. FLAIR-T1CE-fusion (FC-fusion), T2WI-T1CE-fusion (TC-fusion), and FLAIR-T2WI-T1CE-fusion (FTC-fusion) were used for fine-tuning TL-CNNs. Results: IDH1-mutant prediction accuracies using AlexNet, GoogLeNet, ResNet, and VGGNet achieved 70.0% (AUC = 0.660), 65.0% (AUC = 0.600), 70.0% (AUC = 0.700), and 80.0% (AUC = 0.730) for T2WI images, 70.0% (AUC = 0.660), 70.0% (AUC = 0.620), 70.0% (AUC = 0.710), and 80.0% (AUC = 0.720) for FLAIR images, and 73.7% (AUC = 0.744), 73.7% (AUC = 0.656), 73.7% (AUC = 0.633), and 73.7% (AUC = 0.700) for T1CE images, respectively. The highest AUC (0.800) was achieved using VGGNet and FC-fusion images. Conclusions: TL-CNNs (especially VGGNet) had a potential predictive value for IDH1-mutant status of grade II/III gliomas.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 38 条
  • [1] Al-Dhahir, 2021, StatPearls
  • [2] IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection
    Beiko, Jason
    Suki, Dima
    Hess, Kenneth R.
    Fox, Benjamin D.
    Cheung, Vincent
    Cabral, Matthew
    Shonka, Nicole
    Gilbert, Mark R.
    Sawaya, Raymond
    Prabhu, Sujit S.
    Weinberg, Jeffrey
    Lang, Frederick F.
    Aldape, Kenneth D.
    Sulman, Erik P.
    Rao, Ganesh
    McCutcheon, Ian E.
    Cahill, Daniel P.
    [J]. NEURO-ONCOLOGY, 2014, 16 (01) : 81 - 91
  • [3] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [4] Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging
    Chang, Ken
    Bai, Harrison X.
    Zhou, Hao
    Su, Chang
    Bi, Wenya Linda
    Agbodza, Ena
    Kavouridis, Vasileios K.
    Senders, Joeky T.
    Boaro, Alessandro
    Beers, Andrew
    Zhang, Biqi
    Capellini, Alexandra
    Liao, Weihua
    Shen, Qin
    Li, Xuejun
    Xiao, Bo
    Cryan, Jane
    Ramkissoon, Shakti
    Ramkissoon, Lori
    Ligon, Keith
    Wen, Patrick Y.
    Bindra, Ranjit S.
    Woo, John
    Arnaout, Omar
    Gerstner, Elizabeth R.
    Zhang, Paul J.
    Rosen, Bruce R.
    Yang, Li
    Huang, Raymond Y.
    Kalpathy-Cramer, Jayashree
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (05) : 1073 - 1081
  • [5] Prospective Longitudinal Analysis of 2-Hydroxyglutarate Magnetic Resonance Spectroscopy Identifies Broad Clinical Utility for the Management of Patients With IDH-Mutant Glioma
    Choi, Changho
    Raisanen, Jack M.
    Ganji, Sandeep K.
    Zhang, Song
    McNeil, Sarah S.
    An, Zhongxu
    Madan, Akshay
    Hatanpaa, Kimmo J.
    Vemireddy, Vamsidhara
    Sheppard, Christie A.
    Oliver, Dwight
    Hulsey, Keith M.
    Tiwari, Vivek
    Mashimo, Tomoyuki
    Battiste, James
    Barnett, Samuel
    Madden, Christopher J.
    Patel, Toral R.
    Pan, Edward
    Malloy, Craig R.
    Mickey, Bruce E.
    Bachoo, Robert M.
    Maher, Elizabeth A.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (33) : 4030 - U157
  • [6] Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors
    Eckel-Passow, Jeanette E.
    Lachance, Daniel H.
    Molinaro, Annette M.
    Walsh, Kyle M.
    Decker, Paul A.
    Sicotte, Hugues
    Pekmezci, Melike
    Rice, Terri
    Kosel, Matt L.
    Smirnov, Ivan V.
    Sarkar, Gobinda
    Caron, Alissa A.
    Kollmeyer, Thomas M.
    Praska, Corinne E.
    Chada, Anisha R.
    Halder, Chandralekha
    Hansen, Helen M.
    Mccoy, Lucie S.
    Bracci, Paige M.
    Marshall, Roxanne
    Zheng, Shichun
    Reis, Gerald F.
    Pico, Alexander R.
    O'Neill, Brian P.
    Buckner, Jan C.
    Giannini, Caterina
    Huse, Jason T.
    Perry, Arie
    Tihan, Tarik
    Berger, Mitchell S.
    Chang, Susan M.
    Prados, Michael D.
    Wiemels, Joseph
    Wiencke, John K.
    Wrensch, Margaret R.
    Jenkins, Robert B.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) : 2499 - 2508
  • [7] Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas
    Eichinger, Paul
    Alberts, Esther
    Delbridge, Claire
    Trebeschi, Stefano
    Valentinitsch, Alexander
    Bette, Stefanie
    Huber, Thomas
    Gempt, Jens
    Meyer, Bernhard
    Schlegel, Juergen
    Zimmer, Claus
    Kirschke, Jan S.
    Menze, Bjoern H.
    Wiestler, Benedikt
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [9] Insulator dysfunction and oncogene activation in IDH mutant gliomas
    Flavahan, William A.
    Drier, Yotam
    Liau, Brian B.
    Gillespie, Shawn M.
    Venteicher, Andrew S.
    Stemmer-Rachamimov, Anat O.
    Suva, Mario L.
    Bernstein, Bradley E.
    [J]. NATURE, 2016, 529 (7584) : 110 - +
  • [10] Brain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical model
    Hou, Ruichao
    Zhou, Dongming
    Nie, Rencan
    Liu, Dong
    Ruan, Xiaoli
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (04) : 887 - 900