Refining Saliency Maps Using Gaussian Mixture Model

被引:0
作者
Han, Seung-Ho [1 ]
Choi, Ho-Jin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Comp, Daejoen, South Korea
来源
2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024 | 2024年
关键词
Layer-wise Relevance Propagation; Gaussian Mixture Model; Explainable AI; Interpretable AI;
D O I
10.1109/BigComp60711.2024.00018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past decade, deep learning has shown remarkable performance in a variety of AI fields. However, their complex and massive parameters often label them as 'black box' models, raising concerns about their interpretability, and this issue reduces the reliability and usability of deep learning in the real world. In response, there's a growing emphasis on developing 'interpretable' or 'explainable' AI models. In this paper, we propose a novel methodology to refine the clarity of saliency maps derived from Layer-wise Relevance Propagation (LRP) by eliminating noise through the segmentation technique based on the Gaussian Mixture Model (GMM). To prove the effectiveness of the proposed method, we conduct the experimental evaluation by comparing the results of our model and original LRPs.
引用
收藏
页码:56 / 59
页数:4
相关论文
共 12 条
[1]   Deep rule-based classifier with human-level performance and characteristics [J].
Angelov, Plamen P. ;
Gu, Xiaowei .
INFORMATION SCIENCES, 2018, 463 :196-213
[2]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[3]   Accurate image segmentation using Gaussian mixture model with saliency map [J].
Bi, Hui ;
Tang, Hui ;
Yang, Guanyu ;
Shu, Huazhong ;
Dillenseger, Jean-Louis .
PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (03) :869-878
[4]   Understanding Individual Decisions of CNNs via Contrastive Backpropagation [J].
Gu, Jindong ;
Yang, Yinchong ;
Tresp, Volker .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :119-134
[5]   Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation [J].
Iwana, Brian Kenji ;
Kuroki, Ryohei ;
Uchida, Seiichi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :4176-4185
[6]   XRAI: Better Attributions Through Regions [J].
Kapishnikov, Andrei ;
Bolukbasi, Tolga ;
Viegas, Fernanda ;
Terry, Michael .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4947-4956
[7]  
Nam WJ, 2021, AAAI CONF ARTIF INTE, V35, P11604
[8]   Learning Deconvolution Network for Semantic Segmentation [J].
Noh, Hyeonwoo ;
Hong, Seunghoon ;
Han, Bohyung .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1520-1528
[9]  
Sundararajan M, 2017, PR MACH LEARN RES, V70
[10]  
Springenberg JT, 2015, Arxiv, DOI arXiv:1412.6806