Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation

被引:5
作者
Tondar, Abtin [1 ,2 ]
Sanchez-Herrero, Sergio [1 ]
Bepari, Asim Kumar [3 ]
Bahmani, Amir [2 ]
Linan, Laura Calvet [4 ]
Hervas-Marin, David [5 ]
机构
[1] Univ Oberta Catalunya UOC, Dept Comp Sci Multimedia & Telecommun, Barcelona 08018, Spain
[2] Stanford Univ, Stanford Deep Data Res Ctr, Dept Genet, Stanford, CA 94305 USA
[3] North South Univ NSU, Dept Pharmaceut Sci, Dhaka 1229, Bangladesh
[4] Univ Autonoma Barcelona UAB, Telecommun & Syst Engn Dept, Carrer Emprius 2, Bellaterra 08202, Spain
[5] Univ Politecn Valencia UPV, Dept Appl Stat Operat Res & Qual, Alcoy 03801, Spain
关键词
small molecules; virtual screening; BCL2; cancer therapeutics; DRUG DISCOVERY; OPEN BABEL; PROTEINS;
D O I
10.3390/biom14050544
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study aimed to identify potential BCL-2 small molecule inhibitors using deep neural networks (DNN) and random forest (RF), algorithms as well as molecular docking and molecular dynamics (MD) simulations to screen a library of small molecules. The RF model classified 61% (2355/3867) of molecules as 'Active'. Further analysis through molecular docking with Vina identified CHEMBL3940231, CHEMBL3938023, and CHEMBL3947358 as top-scored small molecules with docking scores of -11, -10.9, and 10.8 kcal/mol, respectively. MD simulations validated these compounds' stability and binding affinity to the BCL2 protein.
引用
收藏
页数:18
相关论文
共 53 条
[1]  
Abadi M, 2016, Arxiv, DOI [arXiv:1605.08695, 10.48550/arXiv.1605.08695]
[2]  
Abraham Mark James, 2015, SoftwareX, V1-2, P19, DOI [10.1016/j.softx.2015.06.001, 10.1016/j.softx.2015.06.001]
[3]   Random-forest model for drug-target interaction prediction via Kullbeck-Leibler divergence [J].
Ahn, Sangjin ;
Lee, Si Eun ;
Kim, Mi-Hyun .
JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
[4]   Virtual screening of flavonoids as potential RIPK1 inhibitors for neurodegeneration therapy [J].
Bepari, Asim Kumar ;
Shatabda, Swakkhar ;
Reza, Hasan Mahmud .
PEERJ, 2024, 12
[5]   The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience [J].
Bragina, Maiia E. ;
Daina, Antoine ;
Perez, Marta A. S. ;
Michielin, Olivier ;
Zoete, Vincent .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (02)
[6]   Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds [J].
Cao, Dong-Sheng ;
Liang, Yi-Zeng ;
Xu, Qing-Song ;
Zhang, Liang-Xiao ;
Hu, Qian-Nan ;
Li, Hong-Dong .
JOURNAL OF CHEMOMETRICS, 2011, 25 (04) :201-207
[7]   Artificial Intelligence Approach to Find Lead Compounds for Treating Tumors [J].
Chen, Jian-Qiang ;
Chen, Hsin-Yi ;
Dai, Wen-jie ;
Lv, Qiu-Jie ;
Chen, Calvin Yu-Chian .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (15) :4382-4400
[8]   The BCL-2 Family Reunion [J].
Chipuk, Jerry E. ;
Moldoveanu, Tudor ;
Llambi, Fabien ;
Parsons, Melissa J. ;
Green, Douglas R. .
MOLECULAR CELL, 2010, 37 (03) :299-310
[9]   Machine Learning in Drug Discovery: A Review [J].
Dara, Suresh ;
Dhamercherla, Swetha ;
Jadav, Surender Singh ;
Babu, C. H. Madhu ;
Ahsan, Mohamed Jawed .
ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (03) :1947-1999
[10]   A three-gene signature based on MYC, BCL-2 and NFKBIA improves risk stratification in diffuse large B-cell lymphoma [J].
Derenzini, Enrico ;
Mazzara, Saveria ;
Melle, Federica ;
Motta, Giovanna ;
Fabbri, Marco ;
Bruna, Riccardo ;
Agostinelli, Claudio ;
Cesano, Alessandra ;
Corsini, Chiara Antonia ;
Chen, Ning ;
Righi, Simona ;
Sabattini, Elena ;
Chiappella, Annalisa ;
Calleri, Angelica ;
Fiori, Stefano ;
Tabanelli, Valentina ;
Cabras, Antonello ;
Pruneri, Giancarlo ;
Vitolo, Umberto ;
Gianni, Alessandro Massimo ;
Rambaldi, Alessandro ;
Corradini, Paolo ;
Zinzani, Pier Luigi ;
Tarella, Corrado ;
Pileri, Stefano .
HAEMATOLOGICA, 2021, 106 (09) :2405-2416