Wrinkled TiNAgNW Nanocomposites for High-Performance Flexible Electrodes on TEMPO-Oxidized Nanocellulose

被引:2
作者
Gence, Loik [1 ,2 ,3 ]
Quero, Franck [4 ]
Escalona, Miguel [2 ]
Wheatley, Robert [2 ,5 ]
Seifert, Birger [2 ,3 ,5 ]
Diaz-Droguett, Donovan [2 ,3 ,6 ]
Retamal, Maria Jose [7 ]
Wallentowitz, Sascha [2 ]
Volkmann, Ulrich Georg [2 ,3 ]
Bhuyan, Heman [2 ,3 ]
机构
[1] Pontificia Univ Catolica Chile, Funct Mat & Devices Lab, Santiago 7820436, Chile
[2] Pontificia Univ Catolica Chile, Inst Fis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[3] Ctr Invest Nanotecnol & Mat Avanzados CIEN UC, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[4] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn Quim Biotecnol & Mat, Lab Nanocelulosa & Biomat, Ave Beauchef 851, Santiago 8370459, Chile
[5] Millennium Inst Res Opt MIRO, Millennium Sci Initiat Program, Santiago, Chile
[6] Ctr Energia UC, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[7] Univ Finis Terrae, Fac Ingn, Santiago 7501015, Chile
关键词
nanocellulose; nanocomposite; nanowires; bendable; titanium nitride; TITANIUM-NITRIDE; FILMS; TIN; CELLULOSE; TRANSPARENT; CONDUCTIVITY; SHAPE; SIZE; SKIN;
D O I
10.3390/nano14141178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we present a novel method for fabricating semi-transparent electrodes by combining silver nanowires (AgNW) with titanium nitride (TiN) layers, resulting in conductive nanocomposite coatings with exceptional electromechanical properties. These nanocomposites were deposited on cellulose nanopaper (CNP) using a plasma-enhanced pulsed laser deposition (PE-PLD) technique at low temperatures (below 200 degrees C). Repetitive bending tests demonstrate that incorporating AgNW into TiN coatings significantly enhances the microstructure, increasing the electrode's electromechanical robustness by up to four orders of magnitude compared to commercial PET/ITO substrates. Furthermore, the optical and electrical conductivities can be optimized by adjusting the AgNW network density and TiN synthesis temperature. Our results also indicate that the nanocomposite electrodes exhibit improved stability in air and superior adhesion compared to bare AgNW coatings.
引用
收藏
页数:13
相关论文
共 56 条
[1]  
Adamovich V, 1999, ADV MATER, V11, P727, DOI 10.1002/(SICI)1521-4095(199906)11:9<727::AID-ADMA727>3.0.CO
[2]  
2-5
[3]   Benefits, Problems, and Solutions of Silver Nanowire Transparent Conductive Electrodes in Indium Tin Oxide (ITO)-Free Flexible Solar Cells [J].
Azani, Mohammad-Reza ;
Hassanpour, Azin ;
Torres, Tomas .
ADVANCED ENERGY MATERIALS, 2020, 10 (48)
[4]   Fully CMOS-compatible titanium nitride nanoantennas [J].
Briggs, Justin A. ;
Naik, Gururaj V. ;
Petach, Trevor A. ;
Baum, Brian K. ;
Goldhaber-Gordon, David ;
Dionne, Jennifer A. .
APPLIED PHYSICS LETTERS, 2016, 108 (05)
[5]   Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering [J].
Calderon Velasco, S. ;
Cavaleiro, A. ;
Carvalho, S. .
PROGRESS IN MATERIALS SCIENCE, 2016, 84 :158-191
[6]   Geometry and physics of wrinkling [J].
Cerda, E ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[7]   Cracking of titanium nitride films grown on polycarbonate [J].
Chaiwong, C. ;
McKenzie, D. R. ;
Bilek, M. M. M. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (9-11) :5596-5600
[8]   Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering [J].
Chang, Chun-Chieh ;
Nogan, John ;
Yang, Zu-Po ;
Kort-Kamp, Wilton J. M. ;
Ross, Willard ;
Luk, Ting S. ;
Dalvit, Diego A. R. ;
Azad, Abul K. ;
Chen, Hou-Tong .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Nanocellulose-based conductive materials and their emerging applications in energy devices - A review [J].
Du, Xu ;
Zhang, Zhe ;
Liu, Wei ;
Deng, Yulin .
NANO ENERGY, 2017, 35 :299-320
[10]   Size, shape, orientation and crystallinity of cellulose Iβ by X-ray powder diffraction using a free spreadsheet program [J].
Duchemin, Benoit .
CELLULOSE, 2017, 24 (07) :2727-2741