Synthetic CT generation based on multi-sequence MR using CycleGAN for head and neck MRI-only planning

被引:1
作者
Deng, Liwei [1 ,2 ]
Chen, Songyu [1 ]
Li, Yunfa [2 ]
Huang, Sijuan [3 ]
Yang, Xin [3 ]
Wang, Jing [4 ]
机构
[1] Harbin Univ Sci & Technol, Sch Comp Sci & Technol, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Automat, Heilongjiang Prov Key Lab Complex Intelligent Syst, Harbin 150080, Heilongjiang, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Canc Ctr,Dept Radi, Guangzhou 510060, Guangdong, Peoples R China
[4] South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou 510631, Peoples R China
基金
美国国家科学基金会;
关键词
MR; CT; sCT; CycleGAN; MRI-only based radiotherapy; Multi-sequence; COMPUTED-TOMOGRAPHY GENERATION; RESONANCE; NETWORK;
D O I
10.1007/s13534-024-00402-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.
引用
收藏
页码:1319 / 1333
页数:15
相关论文
共 39 条
[1]   Improving generalization in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with unpaired data [J].
Boni, Evin N. D. Brou ;
Klein, John ;
Gulyban, Akos ;
Reynaert, Nick ;
Pasquier, David .
MEDICAL PHYSICS, 2021, 48 (06) :3003-3010
[2]   Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy [J].
Bourbonne, Vincent ;
Jaouen, Vincent ;
Hognon, Clement ;
Boussion, Nicolas ;
Lucia, Francois ;
Pradier, Olivier ;
Bert, Julien ;
Visvikis, Dimitris ;
Schick, Ulrike .
CANCERS, 2021, 13 (05) :1-13
[3]   Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences [J].
Dowling, Jason A. ;
Sun, Jidi ;
Pichler, Peter ;
Rivest-Henault, David ;
Ghose, Soumya ;
Richardson, Haylea ;
Wratten, Chris ;
Martin, Jarad ;
Arm, Jameen ;
Best, Leah ;
Chandra, Shekhar S. ;
Fripp, Jurgen ;
Menk, Frederick W. ;
Greer, Peter B. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (05) :1144-1153
[4]   An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy [J].
Dowling, Jason A. ;
Lambert, Jonathan ;
Parker, Joel ;
Salvado, Olivier ;
Fripp, Jurgen ;
Capp, Anne ;
Wratten, Chris ;
Denham, James W. ;
Greer, Peter B. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 83 (01) :E5-E11
[5]   Generating synthetic CTs from magnetic resonance images using generative adversarial networks [J].
Emami, Hajar ;
Dong, Ming ;
Nejad-Davarani, Siamak P. ;
Glide-Hurst, Carri K. .
MEDICAL PHYSICS, 2018, 45 (08) :3627-3636
[6]   MRI-based synthetic CT shows equivalence to conventional CT for the morphological assessment of the hip joint [J].
Florkow, Mateusz C. ;
Willemsen, Koen ;
Zijlstra, Frank ;
Foppen, Wouter ;
van der Wal, Bart C. H. ;
van Zyp, Jochem R. N. van der Voort ;
Viergever, Max A. ;
Castelein, Rene M. ;
Weinans, Harrie ;
van Stralen, Marijn ;
Sakkers, Ralph J. B. ;
Seevinck, Peter R. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2022, 40 (04) :954-964
[7]   Deep learning-based MR-to-CT synthesis: The influence of varying gradient echo-based MR images as input channels [J].
Florkow, Mateusz C. ;
Zijlstra, Frank ;
Willemsen, Koen ;
Maspero, Matteo ;
van den Berg, Cornelis A. T. ;
Kerkmeijer, Linda G. W. ;
Castelein, Rene M. ;
Weinans, Harrie ;
Viergever, Max A. ;
van Stralen, Marijn ;
Seevinck, Peter R. .
MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (04) :1429-1441
[8]   Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy [J].
Fu, Jie ;
Singhrao, Kamal ;
Cao, Minsong ;
Yu, Victoria ;
Santhanam, Anand P. ;
Yang, Yingli ;
Guo, Minghao ;
Raldow, Ann C. ;
Ruan, Dan ;
Lewis, John H. .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01)
[9]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[10]   Evaluation of a commercial synthetic computed tomography generation solution for magnetic resonance imaging-only radiotherapy [J].
Gonzalez-Moya, A. ;
Dufreneix, S. ;
Ouyessad, N. ;
Guillerminet, C. ;
Autret, D. .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (06) :191-197