A multi-agent deep reinforcement learning approach for traffic signal coordination

被引:1
|
作者
Hu, Ta-Yin [1 ]
Li, Zhuo-Yu [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Transportat & Commun Management Sci, Tainan, Taiwan
关键词
adaptive signal control; artificial intelligence; deep reinforcement learning;
D O I
10.1049/itr2.12521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The purpose of signal control is to allocate time for competing traffic flows to ensure safety. Artificial intelligence has made transportation researchers more interested in adaptive traffic signal control, and recent literature confirms that deep reinforcement learning (DRL) can be effectively applied to adaptive traffic signal control. Deep neural networks enhance the learning potential of reinforcement learning. This study applies the DRL method, Double Deep Q-Network, to train local agents. Each local agent learns independently to accommodate the regional traffic flows and dynamics. After completing the learning, a global agent is created to integrate and unify the action policies selected by each local agent to achieve the purpose of traffic signal coordination. Traffic flow conditions are simulated through the simulation of urban mobility. The benefits of the proposed approach include improving the efficiency of intersections and minimizing the overall average waiting time of vehicles. The proposed multi-agent reinforcement learning model significantly improves the average vehicle waiting time and queue length compared with the results from PASSER-V and pre-timed signal setting strategies.
引用
收藏
页码:1428 / 1444
页数:17
相关论文
共 50 条
  • [41] Deep Reinforcement Learning for Ecological and Distributed Urban Traffic Signal Control with Multi-Agent Equilibrium Decision Making
    Yan, Liping
    Wang, Jing
    ELECTRONICS, 2024, 13 (10)
  • [42] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [43] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [44] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [45] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Jana, Meghdeep
    Vachhani, Leena
    Sinha, Arpita
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (04) : 724 - 745
  • [46] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Meghdeep Jana
    Leena Vachhani
    Arpita Sinha
    International Journal of Intelligent Robotics and Applications, 2022, 6 : 724 - 745
  • [47] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [48] An Incremental Approach for Multi-Agent Deep Reinforcement Learning for Multicriteria Missions
    Cysne, Nicholas Scharan
    Ribeiro, Carlos Henrique Costa
    Ghedini, Cinara Guellner
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [49] A Meta Multi-agent Reinforcement Learning Algorithm for Multi-intersection Traffic Signal Control
    Yang, Shantian
    Yang, Bo
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 18 - 25
  • [50] Distributed Coordination Guidance in Multi-Agent Reinforcement Learning
    Lau, Qiangfeng Peter
    Lee, Mong Li
    Hsu, Wynne
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 456 - 463