A multi-agent deep reinforcement learning approach for traffic signal coordination

被引:1
|
作者
Hu, Ta-Yin [1 ]
Li, Zhuo-Yu [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Transportat & Commun Management Sci, Tainan, Taiwan
关键词
adaptive signal control; artificial intelligence; deep reinforcement learning;
D O I
10.1049/itr2.12521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The purpose of signal control is to allocate time for competing traffic flows to ensure safety. Artificial intelligence has made transportation researchers more interested in adaptive traffic signal control, and recent literature confirms that deep reinforcement learning (DRL) can be effectively applied to adaptive traffic signal control. Deep neural networks enhance the learning potential of reinforcement learning. This study applies the DRL method, Double Deep Q-Network, to train local agents. Each local agent learns independently to accommodate the regional traffic flows and dynamics. After completing the learning, a global agent is created to integrate and unify the action policies selected by each local agent to achieve the purpose of traffic signal coordination. Traffic flow conditions are simulated through the simulation of urban mobility. The benefits of the proposed approach include improving the efficiency of intersections and minimizing the overall average waiting time of vehicles. The proposed multi-agent reinforcement learning model significantly improves the average vehicle waiting time and queue length compared with the results from PASSER-V and pre-timed signal setting strategies.
引用
收藏
页码:1428 / 1444
页数:17
相关论文
共 50 条
  • [21] Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning
    Li, Zhenning
    Yu, Hao
    Zhang, Guohui
    Dong, Shangjia
    Xu, Cheng-Zhong
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125
  • [22] Coordination as inference in multi-agent reinforcement learning
    Li, Zhiyuan
    Wu, Lijun
    Su, Kaile
    Wu, Wei
    Jing, Yulin
    Wu, Tong
    Duan, Weiwei
    Yue, Xiaofeng
    Tong, Xiyi
    Han, Yizhou
    NEURAL NETWORKS, 2024, 172
  • [23] Agent Coordination in Air Combat Simulation using Multi-Agent Deep Reinforcement Learning
    Kallstrom, Johan
    Heintz, Fredrik
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2157 - 2164
  • [24] Traffic Optimization in Satellites Communications: A Multi-agent Reinforcement Learning Approach
    Qin, Zeyu
    Yao, Haipeng
    Mai, Tianle
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 269 - 273
  • [25] An Improved Traffic Signal Control Method Based on Multi-agent Reinforcement Learning
    Xu, Jianyou
    Zhang, Zhichao
    Zhang, Shuo
    Miao, Jiayao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6612 - 6616
  • [26] Multi-Agent Reinforcement Learning for Traffic Signal Control: Algorithms and Robustness Analysis
    Wu, Chunliang
    Ma, Zhenliang
    Kim, Inhi
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [27] PyTSC: A Unified Platform for Multi-Agent Reinforcement Learning in Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    SENSORS, 2025, 25 (05)
  • [28] Air-Ground Coordination Communication by Multi-Agent Deep Reinforcement Learning
    Ding, Ruijin
    Gao, Feifei
    Yang, Guanghua
    Shen, Xuemin Sherman
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [29] Adaptive Multi-Agent Deep Mixed Reinforcement Learning for Traffic Light Control
    Li, Lulu
    Zhu, Ruijie
    Wu, Shuning
    Ding, Wenting
    Xu, Mingliang
    Lu, Jiwen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 1803 - 1816
  • [30] Multi-Agent Deep Reinforcement Learning for Cooperative Driving in Crowded Traffic Scenarios
    Park, Jongwon
    Min, Kyushik
    Huh, Kunsoo
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,