A multi-agent deep reinforcement learning approach for traffic signal coordination

被引:1
|
作者
Hu, Ta-Yin [1 ]
Li, Zhuo-Yu [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Transportat & Commun Management Sci, Tainan, Taiwan
关键词
adaptive signal control; artificial intelligence; deep reinforcement learning;
D O I
10.1049/itr2.12521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The purpose of signal control is to allocate time for competing traffic flows to ensure safety. Artificial intelligence has made transportation researchers more interested in adaptive traffic signal control, and recent literature confirms that deep reinforcement learning (DRL) can be effectively applied to adaptive traffic signal control. Deep neural networks enhance the learning potential of reinforcement learning. This study applies the DRL method, Double Deep Q-Network, to train local agents. Each local agent learns independently to accommodate the regional traffic flows and dynamics. After completing the learning, a global agent is created to integrate and unify the action policies selected by each local agent to achieve the purpose of traffic signal coordination. Traffic flow conditions are simulated through the simulation of urban mobility. The benefits of the proposed approach include improving the efficiency of intersections and minimizing the overall average waiting time of vehicles. The proposed multi-agent reinforcement learning model significantly improves the average vehicle waiting time and queue length compared with the results from PASSER-V and pre-timed signal setting strategies.
引用
收藏
页码:1428 / 1444
页数:17
相关论文
共 50 条
  • [11] Learning Decentralized Traffic Signal Controllers With Multi-Agent Graph Reinforcement Learning
    Zhang, Yao
    Yu, Zhiwen
    Zhang, Jun
    Wang, Liang
    Luan, Tom H.
    Guo, Bin
    Yuen, Chau
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7180 - 7195
  • [12] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793
  • [13] Causal inference multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    Yang, Bo
    Zeng, Zheng
    Kang, Zhongfeng
    INFORMATION FUSION, 2023, 94 : 243 - 256
  • [14] Hierarchical graph multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    INFORMATION SCIENCES, 2023, 634 : 55 - 72
  • [15] Engineering A Large-Scale Traffic Signal Control: A Multi-Agent Reinforcement Learning Approach
    Chen, Yue
    Li, Changle
    Yue, Wenwei
    Zhang, Hehe
    Mao, Guoqiang
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [16] Distributed interference coordination based on multi-agent deep reinforcement learning
    Liu T.
    Luo Y.
    Yang C.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (07): : 38 - 48
  • [17] Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning
    Bacchiani, Giulio
    Molinari, Daniele
    Patander, Marco
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1547 - 1555
  • [18] Multi-agent Deep Reinforcement Learning collaborative Traffic Signal Control method considering intersection heterogeneity
    Bie, Yiming
    Ji, Yuting
    Ma, Dongfang
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 164
  • [19] Multi-Agent Deep Reinforcement Learning For Real-World Traffic Signal Controls - A Case Study
    Friesen, Maxim
    Tan, Tian
    Jasperneite, Juergen
    Wang, Jie
    2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 162 - 169
  • [20] Multi-agent Deep Reinforcement Learning with Spatio-Temporal Feature Fusion for Traffic Signal Control
    Du, Xin
    Wang, Jiahai
    Chen, Siyuan
    Liu, Zhiyue
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV, 2021, 12978 : 470 - 485