A multi-agent deep reinforcement learning approach for traffic signal coordination

被引:1
作者
Hu, Ta-Yin [1 ]
Li, Zhuo-Yu [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Transportat & Commun Management Sci, Tainan, Taiwan
关键词
adaptive signal control; artificial intelligence; deep reinforcement learning;
D O I
10.1049/itr2.12521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The purpose of signal control is to allocate time for competing traffic flows to ensure safety. Artificial intelligence has made transportation researchers more interested in adaptive traffic signal control, and recent literature confirms that deep reinforcement learning (DRL) can be effectively applied to adaptive traffic signal control. Deep neural networks enhance the learning potential of reinforcement learning. This study applies the DRL method, Double Deep Q-Network, to train local agents. Each local agent learns independently to accommodate the regional traffic flows and dynamics. After completing the learning, a global agent is created to integrate and unify the action policies selected by each local agent to achieve the purpose of traffic signal coordination. Traffic flow conditions are simulated through the simulation of urban mobility. The benefits of the proposed approach include improving the efficiency of intersections and minimizing the overall average waiting time of vehicles. The proposed multi-agent reinforcement learning model significantly improves the average vehicle waiting time and queue length compared with the results from PASSER-V and pre-timed signal setting strategies.
引用
收藏
页码:1428 / 1444
页数:17
相关论文
共 27 条
  • [1] Reinforcement learning for True Adaptive traffic signal control
    Abdulhai, B
    Pringle, R
    Karakoulas, GJ
    [J]. JOURNAL OF TRANSPORTATION ENGINEERING, 2003, 129 (03) : 278 - 285
  • [2] An Y., 2022, P 2022 10 INT C TRAF
  • [3] [Anonymous], 2010, EURASIP J. Adv. Signal Process., DOI DOI 10.1155/2010/724035
  • [4] A Simulation-Based Traffic Signal Control for Congested Urban Traffic Networks
    Baldi, Simone
    Michailidis, Iakovos
    Ntampasi, Vasiliki
    Kosmatopoulos, Elias
    Papamichail, Ioannis
    Papageorgiou, Markos
    [J]. TRANSPORTATION SCIENCE, 2019, 53 (01) : 6 - 20
  • [5] Deep reinforcement learning for traffic signal control with consistent state and reward design approach
    Bouktif, Salah
    Cheniki, Abderraouf
    Ouni, Ali
    El-Sayed, Hesham
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [6] Canh T.N., 2023, DESIGN DEEP REINFORC, DOI [10.21203/rs.3.rs-3128875/v1, DOI 10.21203/RS.3.RS-3128875/V1]
  • [7] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [8] El Hassak I., 2019, P 2019 INT C WIRELES
  • [9] FranoisLavet V., 2018, INTRO DEEP REINFORCE
  • [10] Gao J., 2017, Adaptive traffic signal control: deep reinforcement learning algorithm with experience replay and target network