Application of the Hydrophilic Interaction Liquid Chromatography (HILIC-MS) Novel Protocol to Study the Metabolic Heterogeneity of Glioblastoma Cells

被引:0
作者
Sofranko, Jakub [1 ]
Gondas, Eduard [2 ]
Murin, Radovan [1 ]
机构
[1] Comenius Univ, Jessenius Fac Med Martin, Dept Med Biochem, Mala Hora 4D, Martin 03601, Slovakia
[2] Comenius Univ, Jessenius Fac Med Martin, Dept Pharmacol, Mala Hora 4D, Martin 03601, Slovakia
关键词
glioblastoma; HILIC; LC-MS; metabolomics; amino acid; metabolic heterogeneity;
D O I
10.3390/metabo14060297
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glioblastoma is a highly malignant brain tumor consisting of a heterogeneous cellular population. The transformed metabolism of glioblastoma cells supports their growth and division on the background of their milieu. One might hypothesize that the transformed metabolism of a primary glioblastoma could be well adapted to limitations in the variety and number of substrates imported into the brain parenchyma and present it their microenvironment. Additionally, the phenotypic heterogeneity of cancer cells could promote the variations among their metabolic capabilities regarding the utilization of available substrates and release of metabolic intermediates. With the aim to identify the putative metabolic footprint of different types of glioblastoma cells, we exploited the possibility for separation of polar and ionic molecules present in culture media or cell lysates by hydrophilic interaction liquid chromatography (HILIC). The mass spectrometry (MS) was then used to identify and quantify the eluted compounds. The introduced method allows the detection and quantification of more than 150 polar and ionic metabolites in a single run, which may be present either in culture media or cell lysates and provide data for polaromic studies within metabolomics. The method was applied to analyze the culture media and cell lysates derived from two types of glioblastoma cells, T98G and U118. The analysis revealed that even both types of glioblastoma cells share several common metabolic aspects, and they also exhibit differences in their metabolic capability. This finding agrees with the hypothesis about metabolic heterogeneity of glioblastoma cells. Furthermore, the combination of both analytical methods, HILIC-MS, provides a valuable tool for metabolomic studies based on the simultaneous identification and quantification of a wide range of polar and ionic metabolites-polaromics.
引用
收藏
页数:22
相关论文
共 65 条
[1]   Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics [J].
Adams, Kendra J. ;
Pratt, Brian ;
Bose, Neelanjan ;
Dubois, Laura G. ;
St John-Williams, Lisa ;
Perrott, Kevin M. ;
Ky, Karina ;
Kapahi, Pankaj ;
Sharma, Vagisha ;
MacCoss, Michael J. ;
Moseley, M. Arthur ;
Colton, Carol A. ;
MacLean, Brendan X. ;
Schilling, Birgit ;
Thompson, J. Will .
JOURNAL OF PROTEOME RESEARCH, 2020, 19 (04) :1447-1458
[2]   Metabolic heterogeneity and adaptability in brain tumors [J].
Badr, Christian E. ;
Silver, Daniel J. ;
Siebzehnrubl, Florian A. ;
Deleyrolle, Loic P. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (24) :5101-5119
[3]   Glioblastoma Metabolism: Insights and Therapeutic Strategies [J].
Bernhard, Chloe ;
Reita, Damien ;
Martin, Sophie ;
Entz-Werle, Natacha ;
Dontenwill, Monique .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
[4]   Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets [J].
Bi, Junfeng ;
Chowdhry, Sudhir ;
Wu, Sihan ;
Zhang, Wenjing ;
Masui, Kenta ;
Mischel, Paul S. .
NATURE REVIEWS CANCER, 2020, 20 (01) :57-70
[5]   Current Practices in LC-MS Untargeted Metabolomics: A Scoping Review on the Use of Pooled Quality Control Samples [J].
Broeckling, Corey D. ;
Beger, Richard D. ;
Cheng, Leo L. ;
Cumeras, Raquel ;
Cuthbertson, Daniel J. ;
Dasari, Surendra ;
Davis, W. Clay ;
Dunn, Warwick B. ;
Evans, Anne Marie ;
Fernandez-Ochoa, Alvaro ;
Gika, Helen ;
Goodacre, Royston ;
Goodman, Kelli D. ;
Gouveia, Goncalo J. ;
Hsu, Ping-Ching ;
Kirwan, Jennifer A. ;
Kodra, Dritan ;
Kuligowski, Julia ;
Lan, Renny Shang-Lun ;
Monge, Maria Eugenia ;
Moussa, Laura W. ;
Nair, Sindhu G. ;
Reisdorph, Nichole ;
Sherrod, Stacy D. ;
Ulmer Holland, Candice ;
Vuckovic, Dajana ;
Yu, Li-Rong ;
Zhang, Bo ;
Theodoridis, Georgios ;
Mosley, Jonathan D. .
ANALYTICAL CHEMISTRY, 2023, 95 (51) :18645-18654
[6]   The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway [J].
Carbonneau, Melissa ;
Gagne, Laurence M. ;
Lalonde, Marie-Eve ;
Germain, Marie-Anne ;
Motorina, Alena ;
Guiot, Marie-Christine ;
Secco, Blandine ;
Vincent, Emma E. ;
Tumber, Anthony ;
Hulea, Laura ;
Bergeman, Jonathan ;
Oppermann, Udo ;
Jones, Russell G. ;
Laplante, Mathieu ;
Topisirovic, Ivan ;
Petrecca, Kevin ;
Huot, Marc-Etienne ;
Mallette, Frederick A. .
NATURE COMMUNICATIONS, 2016, 7
[7]   Amino acid metabolism in tumor biology and therapy [J].
Chen, Jie ;
Cui, Likun ;
Lu, Shaoteng ;
Xu, Sheng .
CELL DEATH & DISEASE, 2024, 15 (01)
[8]   Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology [J].
Chen, Sirui ;
Jiang, Jingjing ;
Shen, Ao ;
Miao, Ying ;
Cao, Yunfeng ;
Zhang, Ying ;
Cong, Peiyu ;
Gao, Peng .
METABOLITES, 2022, 12 (10)
[9]   Lipid metabolism reprogramming and its potential targets in cancer [J].
Cheng, Chunming ;
Geng, Feng ;
Cheng, Xiang ;
Guo, Deliang .
CANCER COMMUNICATIONS, 2018, 38
[10]   Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells [J].
Commisso, Cosimo ;
Davidson, Shawn M. ;
Soydaner-Azeloglu, Rengin G. ;
Parker, Seth J. ;
Kamphorst, Jurre J. ;
Hackett, Sean ;
Grabocka, Elda ;
Nofal, Michel ;
Drebin, Jeffrey A. ;
Thompson, Craig B. ;
Rabinowitz, Joshua D. ;
Metallo, Christian M. ;
Vander Heiden, Matthew G. ;
Bar-Sagi, Dafna .
NATURE, 2013, 497 (7451) :633-+