Metatranscriptomics: A Tool for Clinical Metagenomics

被引:1
作者
Tyagi, Shivani [1 ]
Katara, Pramod [1 ]
机构
[1] Univ Allahabad, Ctr Bioinformat, Computat Omics Lab, IIDS, Prayagraj, India
关键词
metatranscriptome; metagenomics; microbiome; bioinformatics; ecology; clinical omics; RNA-SEQ; DIAGNOSIS; IDENTIFICATION; MICROBIOME; STABILITY; GENES; DNA;
D O I
10.1089/omi.2024.0130
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the field of bioinformatics, amplicon sequencing of 16S rRNA genes has long been used to investigate community membership and taxonomic abundance in microbiome studies. As we can observe, shotgun metagenomics has become the dominant method in this field. This is largely owing to advancements in sequencing technology, which now allow for random sequencing of the entire genetic content of a microbiome. Furthermore, this method allows profiling both genes and the microbiome's membership. Although these methods have provided extensive insights into various microbiomes, they solely assess the existence of organisms or genes, without determining their active role within the microbiome. Microbiome scholarship now includes metatranscriptomics to decipher how a community of microorganisms responds to changing environmental conditions over a period of time. Metagenomic studies identify the microbes that make up a community but metatranscriptomics explores the diversity of active genes within that community, understanding their expression profile and observing how these genes respond to changes in environmental conditions. This expert review article offers a critical examination of the computational metatranscriptomics tools for studying the transcriptomes of microbial communities. First, we unpack the reasons behind the need for community transcriptomics. Second, we explore the prospects and challenges of metatranscriptomic workflows, starting with isolation and sequencing of the RNA community, then moving on to bioinformatics approaches for quantifying RNA features, and statistical techniques for detecting differential expression in a community. Finally, we discuss strengths and shortcomings in relation to other microbiome analysis approaches, pipelines, use cases and limitations, and contextualize metatranscriptomics as a tool for clinical metagenomics.
引用
收藏
页码:394 / 407
页数:14
相关论文
共 117 条
  • [1] Metatranscriptome of human faecal microbial communities in a cohort of adult men
    Abu-Ali, Galeb S.
    Mehta, Raaj S.
    Lloyd-Price, Jason
    Mallick, Himel
    Branck, Tobyn
    Ivey, Kerry L.
    Drew, David A.
    DuLong, Casey
    Rimm, Eric
    Izard, Jacques
    Chan, Andrew T.
    Huttenhower, Curtis
    [J]. NATURE MICROBIOLOGY, 2018, 3 (03): : 356 - 366
  • [2] Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome
    Abubucker, Sahar
    Segata, Nicola
    Goll, Johannes
    Schubert, Alyxandria M.
    Izard, Jacques
    Cantarel, Brandi L.
    Rodriguez-Mueller, Beltran
    Zucker, Jeremy
    Thiagarajan, Mathangi
    Henrissat, Bernard
    White, Owen
    Kelley, Scott T.
    Methe, Barbara
    Schloss, Patrick D.
    Gevers, Dirk
    Mitreva, Makedonka
    Huttenhower, Curtis
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
  • [3] Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis
    Aguiar-Pulido, Vanessa
    Huang, Wenrui
    Suarez-Ulloa, Victoria
    Cickovski, Trevor
    Mathee, Kalai
    Narasimhan, Giri
    [J]. EVOLUTIONARY BIOINFORMATICS, 2016, 12 : 5 - 16
  • [4] A new genomic blueprint of the human gut microbiota
    Almeida, Alexandre
    Mitchell, Alex L.
    Boland, Miguel
    Forster, Samuel C.
    Gloor, Gregory B.
    Tarkowska, Aleksandra
    Lawley, Trevor D.
    Finn, Robert D.
    [J]. NATURE, 2019, 568 (7753) : 499 - +
  • [5] miARma-Seq, a comprehensive pipeline for the simultaneous study and integration of miRNA and mRNA expression data
    Andres-Leon, Eduardo
    Rojas, Ana M.
    [J]. METHODS, 2019, 152 : 31 - 40
  • [6] Andrews S, 2010, FastQC: a quality control tool for high throughput sequence data
  • [7] Enterotypes of the human gut microbiome
    Arumugam, Manimozhiyan
    Raes, Jeroen
    Pelletier, Eric
    Le Paslier, Denis
    Yamada, Takuji
    Mende, Daniel R.
    Fernandes, Gabriel R.
    Tap, Julien
    Bruls, Thomas
    Batto, Jean-Michel
    Bertalan, Marcelo
    Borruel, Natalia
    Casellas, Francesc
    Fernandez, Leyden
    Gautier, Laurent
    Hansen, Torben
    Hattori, Masahira
    Hayashi, Tetsuya
    Kleerebezem, Michiel
    Kurokawa, Ken
    Leclerc, Marion
    Levenez, Florence
    Manichanh, Chaysavanh
    Nielsen, H. Bjorn
    Nielsen, Trine
    Pons, Nicolas
    Poulain, Julie
    Qin, Junjie
    Sicheritz-Ponten, Thomas
    Tims, Sebastian
    Torrents, David
    Ugarte, Edgardo
    Zoetendal, Erwin G.
    Wang, Jun
    Guarner, Francisco
    Pedersen, Oluf
    de Vos, Willem M.
    Brunak, Soren
    Dore, Joel
    Weissenbach, Jean
    Ehrlich, S. Dusko
    Bork, Peer
    [J]. NATURE, 2011, 473 (7346) : 174 - 180
  • [8] The salivary metatranscriptome as an accurate diagnostic indicator of oral cancer
    Banavar, Guruduth
    Ogundijo, Oyetunji
    Toma, Ryan
    Rajagopal, Sathyapriya
    Lim, Yen Kai
    Tang, Kai
    Camacho, Francine
    Torres, Pedro J.
    Gline, Stephanie
    Parks, Matthew
    Kenny, Liz
    Perlina, Ally
    Tily, Hal
    Dimitrova, Nevenka
    Amar, Salomon
    Vuyisich, Momchilo
    Punyadeera, Chamindie
    [J]. NPJ GENOMIC MEDICINE, 2021, 6 (01)
  • [9] Cell free DNA from respiratory pathogens is detectable in the blood plasma of Cystic Fibrosis patients
    Barrett, Sara L. Rassoulian
    Holmes, Elizabeth A.
    Long, Dustin R.
    Shean, Ryan C.
    Bautista, Gilbert E.
    Ravishankar, Sumedha
    Peddu, Vikas
    Cookson, Brad T.
    Singh, Pradeep K.
    Greninger, Alexander L.
    Salipante, Stephen J.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] UniProt: a worldwide hub of protein knowledge
    Bateman, Alex
    Martin, Maria-Jesus
    Orchard, Sandra
    Magrane, Michele
    Alpi, Emanuele
    Bely, Benoit
    Bingley, Mark
    Britto, Ramona
    Bursteinas, Borisas
    Busiello, Gianluca
    Bye-A-Jee, Hema
    Da Silva, Alan
    De Giorgi, Maurizio
    Dogan, Tunca
    Castro, Leyla Garcia
    Garmiri, Penelope
    Georghiou, George
    Gonzales, Daniel
    Gonzales, Leonardo
    Hatton-Ellis, Emma
    Ignatchenko, Alexandr
    Ishtiaq, Rizwan
    Jokinen, Petteri
    Joshi, Vishal
    Jyothi, Dushyanth
    Lopez, Rodrigo
    Luo, Jie
    Lussi, Yvonne
    MacDougall, Alistair
    Madeira, Fabio
    Mahmoudy, Mahdi
    Menchi, Manuela
    Nightingale, Andrew
    Onwubiko, Joseph
    Palka, Barbara
    Pichler, Klemens
    Pundir, Sangya
    Qi, Guoying
    Raj, Shriya
    Renaux, Alexandre
    Lopez, Milagros Rodriguez
    Saidi, Rabie
    Sawford, Tony
    Shypitsyna, Aleksandra
    Speretta, Elena
    Turner, Edward
    Tyagi, Nidhi
    Vasudev, Preethi
    Volynkin, Vladimir
    Wardell, Tony
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D506 - D515