A high-entropy strategy for stable structure of sodium ion batteries: From fundamentals to applications

被引:5
|
作者
Liu, Xu [1 ]
Liu, Xin-Yu [1 ]
Zhang, Nan [1 ]
Wang, Peng-Fei [1 ]
Liu, Zong-Lin [1 ]
Zhang, Jun-Hong [2 ]
Shu, Jie [3 ]
Sun, Yan [4 ]
Li, Chun-Sheng [4 ]
Yi, Ting-Feng [1 ,5 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Liaocheng Univ, Coll Chem & Chem Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252059, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Chem & Life Sci, Key Lab Adv Electrode Mat Novel Solar Cells Petr &, Suzhou 215009, Jiangsu, Peoples R China
[5] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
High; -entropy; Suppression of irreversible phase transitions; Structural stabilization; Sodium -ion batteries; OXIDE CATHODE MATERIALS; RECENT PROGRESS; STABILITY; METAL; DESIGN; ANODE; LIFE; MN;
D O I
10.1016/j.cej.2024.153743
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion batteries are excellent candidates for next-generation large-scale energy storage, but their performance is not yet comparable to high-level rechargeable batteries. Therefore, the development of Na-storage materials with excellent performance is crucial. Recently, high-entropy materials have gained attention due to their multi-component synergistic effect and adjustable energy storage characteristics. This is expected to overcome the comprehensive performance bottleneck of traditional materials, providing new opportunities for accelerating the development of Na-storage materials. This review summarizes the latest research results of highentropy strategy in the field of sodium-ion batteries, including cathode, anode, and solid electrolyte. The review provides an in-depth understanding of the structural changes and performance advantages of high-entropy materials and provides a detailed introduction to the key role of high-entropy strategy in maintaining structural stability, suppressing irreversible phase transitions, and improving ion transport. Finally, we present several understandings of the future challenges and opportunities that high-entropy Na-storage materials. Some enlightening guidance is provided for further research on high-entropy substitution strategy for Na-storage materials.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Effect of Initial Structure on Performance of High-Entropy Oxide Anodes for Li-Ion Batteries
    Marques, Otavio J. B. J.
    Walter, Michael D.
    Timofeeva, Elena V.
    Segre, Carlo U.
    BATTERIES-BASEL, 2023, 9 (02):
  • [32] High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries
    Wang, Bing
    Ma, Jun
    Wang, Kejian
    Wang, Dekai
    Xu, Gaojie
    Wang, Xiaogang
    Hu, Zhiwei
    Pao, Chih-Wen
    Chen, Jeng-Lung
    Du, Li
    Du, Xiaofan
    Cui, Guanglei
    ADVANCED ENERGY MATERIALS, 2024, 14 (23)
  • [33] Porous High-Entropy Oxide Anode Materials for Li-Ion Batteries: Preparation, Characterization, and Applications
    Dong, Lishan
    Tian, Yihe
    Luo, Chang
    Zhao, Weimin
    Qin, Chunling
    Wang, Zhifeng
    MATERIALS, 2024, 17 (07)
  • [34] Emerging high-entropy material electrodes for metal-ion batteries
    Shen, Jianyu
    Zeng, Zhen
    Tang, Weihua
    SUSMAT, 2024, 4 (04):
  • [35] Opportunities and challenges of high-entropy materials in lithium-ion batteries
    TongYue Xu
    HuaiWei Feng
    Wei Liu
    Yan Wang
    HongHe Zheng
    Rare Metals, 2024, 43 (10) : 4884 - 4902
  • [36] Era of entropy: Synthesis, structure, properties, and applications of high-entropy materials
    Rost, Christina M.
    Mazza, Alessandro R.
    McCormack, Scott J.
    Page, Katharine
    Sarkar, Abhishek
    Ward, T. Zac
    APPLIED PHYSICS LETTERS, 2024, 125 (20)
  • [37] Opportunities and challenges of high-entropy materials in lithium-ion batteries
    Xu, Tong-Yue
    Feng, Huai-Wei
    Liu, Wei
    Wang, Yan
    Zheng, Hong-He
    RARE METALS, 2024, 43 (10) : 4884 - 4902
  • [38] High-Entropy Sulfides as Electrode Materials for Li-Ion Batteries
    Lin, Ling
    Wang, Kai
    Sarkar, Abhishek
    Njel, Christian
    Karkera, Guruprakash
    Wang, Qingsong
    Azmi, Raheleh
    Fichtner, Maximilian
    Hahn, Horst
    Schweidler, Simon
    Breitung, Ben
    ADVANCED ENERGY MATERIALS, 2022, 12 (08)
  • [39] An Advanced High-Entropy Fluorophosphate Cathode for Sodium-Ion Batteries with Increased Working Voltage and Energy Density
    Gu, Zhen-Yi
    Guo, Jin-Zhi
    Cao, Jun-Ming
    Wang, Xiao-Tong
    Zhao, Xin-Xin
    Zheng, Xue-Ying
    Li, Wen-Hao
    Sun, Zhong-Hui
    Liang, Hao-Jie
    Wu, Xing-Long
    ADVANCED MATERIALS, 2022, 34 (14)
  • [40] High-entropy substitution: A strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties
    Du, Xing-Yu
    Meng, Yan
    Yuan, Hongyan
    Xiao, Dan
    ENERGY STORAGE MATERIALS, 2023, 56 : 132 - 140