A high-entropy strategy for stable structure of sodium ion batteries: From fundamentals to applications

被引:5
|
作者
Liu, Xu [1 ]
Liu, Xin-Yu [1 ]
Zhang, Nan [1 ]
Wang, Peng-Fei [1 ]
Liu, Zong-Lin [1 ]
Zhang, Jun-Hong [2 ]
Shu, Jie [3 ]
Sun, Yan [4 ]
Li, Chun-Sheng [4 ]
Yi, Ting-Feng [1 ,5 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Liaocheng Univ, Coll Chem & Chem Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252059, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Chem & Life Sci, Key Lab Adv Electrode Mat Novel Solar Cells Petr &, Suzhou 215009, Jiangsu, Peoples R China
[5] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
High; -entropy; Suppression of irreversible phase transitions; Structural stabilization; Sodium -ion batteries; OXIDE CATHODE MATERIALS; RECENT PROGRESS; STABILITY; METAL; DESIGN; ANODE; LIFE; MN;
D O I
10.1016/j.cej.2024.153743
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion batteries are excellent candidates for next-generation large-scale energy storage, but their performance is not yet comparable to high-level rechargeable batteries. Therefore, the development of Na-storage materials with excellent performance is crucial. Recently, high-entropy materials have gained attention due to their multi-component synergistic effect and adjustable energy storage characteristics. This is expected to overcome the comprehensive performance bottleneck of traditional materials, providing new opportunities for accelerating the development of Na-storage materials. This review summarizes the latest research results of highentropy strategy in the field of sodium-ion batteries, including cathode, anode, and solid electrolyte. The review provides an in-depth understanding of the structural changes and performance advantages of high-entropy materials and provides a detailed introduction to the key role of high-entropy strategy in maintaining structural stability, suppressing irreversible phase transitions, and improving ion transport. Finally, we present several understandings of the future challenges and opportunities that high-entropy Na-storage materials. Some enlightening guidance is provided for further research on high-entropy substitution strategy for Na-storage materials.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] High-entropy alloys in electrocatalysis: from fundamentals to applications
    Ren, Jin-Tao
    Chen, Lei
    Wang, Hao-Yu
    Yuan, Zhong-Yong
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (23) : 8319 - 8373
  • [2] High-entropy materials: fundamentals and applications
    Brechtl, Jamieson
    Lee, Chanho
    Liaw, Peter K.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 5967 - 5971
  • [3] High entropy anodes in batteries: From fundamentals to applications
    Li, Chunyue
    Chen, Xiehang
    Li, Jixiao
    Xiang, Yang
    Yao, Yutong
    Liao, Weili
    Xue, Weidong
    Zhang, Xiaokun
    Xiang, Yong
    ENERGY STORAGE MATERIALS, 2024, 71
  • [4] Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries
    Mu, Jinxiao
    Cai, Tianxun
    Dong, Wujie
    Zhou, Ce
    Han, Zhen
    Huang, Fuqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [5] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [6] High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries
    Li, Ranran
    Qin, Xuan
    Li, Xiaolei
    Zhu, Jianxun
    Zheng, Li-Rong
    Li, Zhongtao
    Zhou, Weidong
    ADVANCED ENERGY MATERIALS, 2024, 14 (26)
  • [7] High-Entropy Solid-State Na-Ion Conductor for Stable Sodium-Metal Batteries
    Sun, Ge
    Lin, Hezhe
    Yao, Shiyu
    Wei, Zhixuan
    Chen, Nan
    Chen, Gang
    Zhao, Huichao
    Du, Fei
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (28)
  • [8] Research progress of high-entropy cathode materials for sodium-ion batteries
    Wu, Fan
    Wu, Shaoyang
    Ye, Xin
    Ren, Yurong
    Wei, Peng
    CHINESE CHEMICAL LETTERS, 2025, 36 (04)
  • [9] High-entropy configuration strategy boosts excellent rate performance of layered oxide for sodium-ion batteries
    Cai, Qiuyun
    Liu, Xiangyu
    Hu, Haonan
    Wang, Pengfei
    Jia, Min
    Zhang, Xiaoyu
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (05)
  • [10] Recent Advances for High-Entropy based Layered Cathodes for Sodium Ion Batteries
    Gao, Xudong
    Zhang, Xiaoyu
    Liu, Xiangyu
    Tian, Yinfeng
    Cai, Qiuyun
    Jia, Min
    Yan, Xiaohong
    SMALL METHODS, 2023, 7 (09)