Fluid Physics Impacting Vanadium and Other Redox Flow Batteries

被引:0
|
作者
Krowne, Clifford M. [1 ,2 ,3 ]
机构
[1] Naval Res Lab, Mat Sci &Technol Div, Mat & Sensors Branch, Mat Phys & Chem Sect, Code 6362, Washington, DC 20375 USA
[2] Ashlawn Energy LLC, Springfield, VA 22150 USA
[3] Ashlawn Energy LLC, Binghamton, NY 13901 USA
关键词
stress tensor; deviatoric stress tensor; newtonian and non-newtonian motion; compressible and incompressible fluids; -Navier-Stokes equation; vanadium redox flow battery; battery electrodes; bipolar plates and membrane; ENERGY-STORAGE; ION DIFFUSION; EXCHANGE MEMBRANE; RATE OPTIMIZATION; CATHODE MATERIAL; CAPACITY DECAY; DYNAMIC-MODEL; MASS-TRANSFER; HALF-CELL; KW CLASS;
D O I
10.1149/1945-7111/ad5252
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Vanadium redox flow battery (VRFB) has been intensively examined since the 1970s, with researchers looking at its electrochemical time varying electrolyte concentration time variation equations (both tank and cells, for negative and positive half cells), its thermal time variation equations, and fluid flow equations. Chemical behavior of the electrolyte ions has also been intensively examined. Our focus in this treatment is a completely new approach to understanding the physics, chemistry, and electronics of the VRFB. Here, we develop complete theoretical equations by an analytical treatment affecting the fluid flow in the VRFB as well as all other redox flow batteries, providing background derivations applicable for all of the fundamental concepts required to properly understand flow batteries. With these concepts presented, calculations are done to determine actual values for fluid velocity, strain rate, angular fluid velocity, angular momentum, rotational kinetic energy, and gravity effects on fluid velocity in a redox flow battery.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Redox-targeted catalysis for vanadium redox-flow batteries
    Zhang, Feifei
    Huang, Songpeng
    Wang, Xun
    Jia, Chuankun
    Du, Yonghua
    Wang, Qing
    NANO ENERGY, 2018, 52 : 292 - 299
  • [22] Assessment of the reliability of vanadium-redox flow batteries
    Reichelt, Florian
    Mueller, Karsten
    ENGINEERING REPORTS, 2020, 2 (10)
  • [23] Anion Exchange Membranes for Vanadium Redox Flow Batteries
    Chen, Dongyang
    Hickner, Michael A.
    Agar, Ertan
    Kumbur, E. Caglan
    STATIONARY AND LARGE SCALE ELECTRICAL ENERGY STORAGE 2, 2013, 53 (07): : 83 - 89
  • [24] Precursor Engineering for the Electrode of Vanadium Redox Flow Batteries
    Wang, Shangkun
    Jiang, Yingqiao
    Feng, Zemin
    Liu, Yongguang
    Jiang, Long
    Dai, Lei
    Zhu, Jing
    Wang, Ling
    He, Zhangxing
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [25] Determination of Overpotentials in All Vanadium Redox Flow Batteries
    Langner, J.
    Melke, J.
    Ehrenberg, H.
    Roth, C.
    STATIONARY AND LARGE-SCALE ELECTRICAL ENERGY STORAGE SYSTEMS 3, 2014, 58 (37): : 1 - 7
  • [26] Optimization of Electrolyte Rebalancing in Vanadium Redox Flow Batteries
    Jafari, Mehdi
    Sakti, Apurba
    Botterud, Audun
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (01) : 748 - 751
  • [27] A Review of Electrolyte Additives in Vanadium Redox Flow Batteries
    Tian, Wenxin
    Du, Hao
    Wang, Jianzhang
    Weigand, Jan J.
    Qi, Jian
    Wang, Shaona
    Li, Lanjie
    MATERIALS, 2023, 16 (13)
  • [28] A general electrochemical formalism for vanadium redox flow batteries
    Di Noto, Vito
    Vezzu, Keti
    Crivellaro, Giovanni
    Pagot, Gioele
    Sun, Chuanyu
    Meda, Laura
    Rutkowska, Iwona A.
    Kulesza, Pawel J.
    Zawodzinski, Thomas A.
    ELECTROCHIMICA ACTA, 2022, 408
  • [29] Optimizing membrane thickness for vanadium redox flow batteries
    Chen, Dongyang
    Hickner, MichaelA.
    Agar, Ertan
    Kumbur, E. Caglan
    JOURNAL OF MEMBRANE SCIENCE, 2013, 437 : 108 - 113
  • [30] A review on the electrolyte imbalance in vanadium redox flow batteries
    Jirabovornwisut, Tossaporn
    Arpornwichanop, Amornchai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24485 - 24509