Single-step immobilization of hydroxyapatite on fluoropolymer surfaces for enhanced cell adhesion

被引:0
作者
Goreninskii, Semen [1 ,2 ]
Akimchenko, Igor [3 ]
Vorobyev, Alexander [4 ]
Nashchekin, Alexey [5 ]
Nashchekina, Yuliya [6 ]
Bolbasov, Evgeny [1 ]
机构
[1] Tomsk Polytech Univ, Addit Technol Ctr, Lenina Ave 30, Tomsk, Russia
[2] RAS, Onconanotheranost Lab, Shemyakin Ovchinnikov Inst Bioorgan Chem, St 16-10, Moscow, Russia
[3] Tomsk Polytech Univ, BP Weinberg Res Ctr, Lenina Ave 30, Tomsk, Russia
[4] Tomsk Polytech Univ, Res Sch Chem & Appl Biomed Sci, Lenina Ave 30, Tomsk, Russia
[5] Ioffe Inst, Lab Characterizat Mat & Struct Solid State Elect, Polytech Skaya St 26, St Petersburg, Russia
[6] Russian Acad Sci, Cell Technol Ctr, Inst Cytol, Tikhoretskiy pr 4, St Petersburg, Russia
关键词
Hydroxyapatite; Fluoropolymers; Surface modification;
D O I
10.1016/j.matlet.2024.136305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, we report a single-step immobilization of hydroxyapatite (HAp) on the surface of poly(vinylidene fluoride) copolymer. This method utilizes the ability of fluoropolymer to undergo a limited swelling in acetone/ water mixture followed by an entrapment of HAp on its surface. We found that while acetone/water ratio does not affect the thickness of HAp-containing layer, an increase in acetone content results in higher amounts of calcium and phosphorus found in modified area. HAp immobilization not only improved the hydrophilicity of the poly(vinylidene fluoride) copolymer surface but also contributed to enhanced cell adhesion (0.8 +/- 0.4 % for the fluoropolymer surface vs. 86.9 +/- 9.1 % for the modified fluoropolymer surface) and viability (increased by up to 30 %). Overall, this method represents a potent strategy for the modification of fluoropolymers which allows for the fabrication of bioactive implants using standard laboratory equipment.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
Abo-Aziza Faten A M, 2017, Int J Hematol Oncol Stem Cell Res, V11, P121
[2]   One-step production of 3D printed ferroelectric polymer forms using fused deposition modeling [J].
Akimchenko, Igor O. ;
Dubinenko, Gleb E. ;
Rutkowski, Sven ;
Tverdokhlebov, Sergei, I ;
Vorobyev, Alexander O. ;
Bouznik, Vyacheslav M. ;
Bolbasov, Evgeny N. .
APPLIED PHYSICS LETTERS, 2021, 119 (20)
[3]   Modelling solubility in semi-crystalline polymers: a critical comparative review [J].
Atiq, Omar ;
Ricci, Eleonora ;
Baschetti, Marco Giacinti ;
De Angelis, Maria Grazia .
FLUID PHASE EQUILIBRIA, 2022, 556
[4]   Polymer surface modification for the attachment of bioactive compounds [J].
Goddard, J. M. ;
Hotchkiss, J. H. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (07) :698-725
[5]   Surface Roughness Gradients Reveal Topography-Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells [J].
Hou, Yong ;
Xie, Wenyan ;
Yu, Leixiao ;
Camacho, Luis Cuellar ;
Nie, Chuanxiong ;
Zhang, Man ;
Haag, Rainer ;
Wei, Qiang .
SMALL, 2020, 16 (10)
[6]   Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration [J].
Kapat, Kausik ;
Shubhra, Quazi T. H. ;
Zhou, Miao ;
Leeuwenburgh, Sander .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (44)
[7]   Calcium Phosphate-Based Osteoinductive Materials [J].
LeGeros, Racquel Zapanta .
CHEMICAL REVIEWS, 2008, 108 (11) :4742-4753
[8]   Polymers for 3D Printing and Customized Additive Manufacturing [J].
Ligon, Samuel Clark ;
Liska, Robert ;
Stampfl, Juergen ;
Gurr, Matthias ;
Muelhaupt, Rolf .
CHEMICAL REVIEWS, 2017, 117 (15) :10212-10290
[9]   Long Bone Defect Filling with Bioactive Degradable 3D-Implant: Experimental Study [J].
Popkov, Arnold ;
Kononovich, Natalia ;
Dubinenko, Gleb ;
Gorbach, Elena ;
Shastov, Alexander ;
Tverdokhlebov, Sergei ;
Popkov, Dmitry .
BIOMIMETICS, 2023, 8 (02)
[10]   Stimuli-responsive materials in additive manufacturing [J].
Shafranek, Ryan T. ;
Millik, S. Cem ;
Smith, Patrick T. ;
Lee, Chang-Uk ;
Boydston, Andrew J. ;
Nelson, Alshakim .
PROGRESS IN POLYMER SCIENCE, 2019, 93 :36-67