A Comparison of Bayesian Approximation Methods for Analyzing Large Spatial Skewed Data

被引:0
作者
Roy, Paritosh Kumar [1 ,2 ]
Schmidt, Alexandra M. [1 ]
机构
[1] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, 2001 McGill Coll Ave,Suite 1200, Montreal, PQ H3A 1G1, Canada
[2] Univ Dhaka, Inst Stat Res & Training, Dhaka 1000, Bangladesh
基金
加拿大自然科学与工程研究理事会;
关键词
Approximate Gaussian process; Large spatial data; Environmental data analysis; Hilbert space method; Nearest neighbor method; MODEL; PREDICTION;
D O I
10.1007/s13253-024-00635-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Commonly, environmental processes are observed across different locations, and observations present skewed distributions. Recent proposals for analyzing data in their original scale, accommodating spatial structure and skewness, involve two independent Gaussian processes (GP). We focus on a skewed spatial process defined through a convolution of Gaussian and log Gaussian (GLGC) processes. Because of the inclusion of two GPs, the inference procedure quickly becomes challenging as the sample size increases. We aim to investigate how recently developed approximate GPs perform in modeling high-dimensional GLGC processes. Three methods are formulated based on the nearest neighbor (NN) and Hilbert space (HS) methods, and their performances are investigated in comparison with the exact inference using simulation studies. All the approximate methods yield results comparable to exact inference, but the HS-based method provides the fastest inference of moderate to very smooth processes. A hybrid approach incorporating NN and HS methods is preferred for faster inference with improved MCMC efficiency for a wiggly process.Supplementary materials accompanying this paper appear online.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] BAYESIAN INFERENCE OF FINITE POPULATION QUANTILES FOR SKEWED SURVEY DATA USING SKEW-NORMAL PENALIZED SPLINE REGRESSION
    Liu, Yutao
    Chen, Qixuan
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2020, 8 (04) : 792 - 816
  • [42] COMPARISON OF CORONAL EXTRAPOLATION METHODS FOR CYCLE 24 USING HMI DATA
    Arden, William M.
    Norton, Aimee A.
    Sun, Xudong
    Zhao, Xuepu
    ASTROPHYSICAL JOURNAL, 2016, 823 (01)
  • [43] Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment
    Yao, Xueling
    Fu, Bojie
    Lu, Yihe
    Sun, Feixiang
    Wang, Shuai
    Liu, Min
    PLOS ONE, 2013, 8 (01):
  • [44] Bayesian Data Fusion Applied to Soil Drainage Classes Spatial Mapping
    Gengler, Sarah
    Bogaert, Patrick
    MATHEMATICAL GEOSCIENCES, 2016, 48 (01) : 79 - 88
  • [45] ROBUST AND SCALABLE BAYESIAN ANALYSIS OF SPATIAL NEURAL TUNING FUNCTION DATA
    Rad, Kamiar Rahnama
    Machado, Timothy A.
    Paninski, Liam
    ANNALS OF APPLIED STATISTICS, 2017, 11 (02) : 598 - 637
  • [46] A comparison of classification methods across different data complexity scenarios and datasets
    Scholz, Michael
    Wimmer, Tristan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [47] Multivariate spatial hierarchical Bayesian empirical likelihood methods for small area estimation
    Porter, Aaron T.
    Holan, Scott H.
    Wikle, Christopher K.
    STAT, 2015, 4 (01): : 108 - 116
  • [48] Hierarchical Bayesian methods estimate invasive weed impacts at pertinent spatial scales
    Rinella, Matthew J.
    Luschei, Edward C.
    BIOLOGICAL INVASIONS, 2007, 9 (05) : 545 - 558
  • [49] Analyzing large-scale spiking neural data wth HRLAnalysis™
    Thibeault, Corey M.
    O'Brien, Michael J.
    Srinivasa, Narayan
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [50] A Spatial-Bayesian Technique for Imputing Pavement Network Repair Data
    Saliminejad, Siamak
    Gharaibeh, Nasir G.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2012, 27 (08) : 594 - 607