Advancing soy protein isolate-ulvan film physicochemical properties and antioxidant activities through strategic high-pressure homogenization technique

被引:3
|
作者
Cao, Zhen [1 ]
Wang, Huatian [1 ]
Feng, Tao [1 ]
Bu, Xun [1 ]
Cui, Chunfeng [1 ]
Yang, Fan [2 ]
Yu, Chuang [1 ]
机构
[1] Shanghai Inst Technol, Sch Perfume & Aroma Technol, 100,Haiquan Rd, Shanghai 201418, Peoples R China
[2] Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 201418, Peoples R China
关键词
Soy protein isolate; High-pressure homogenization; Ulvan; Composite film; Film -forming interaction; Physiochemical properties; FUNCTIONAL-PROPERTIES; EDIBLE FILMS; MECHANICAL-PROPERTIES; PHYSICAL-PROPERTIES; BARRIER PROPERTIES; WHEY PROTEINS; GELATIN; CHITOSAN; ACID; POLYSACCHARIDE;
D O I
10.1016/j.indcrop.2024.118704
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Soy protein-based films often exhibit poor properties, including limited mechanical strength, stability, and bioactivity, which hinder their extensive application in the food industry, particularly in edible packaging. To enhance the properties of soy protein-based films, we employed high-pressure homogenization (HPH) to modify the soybean protein isolate (SPI) molecules and sought to cross-link SPI with ulvan polysaccharide, which possesses distinctive bioactivities. The results confirmed that soluble ulvan polysaccharides were incorporated into the cross-linking system through hydrogen bonding. Results indicated that HPH treatment enhanced SPI's solubility and surface hydrophobicity (H0), promoting hydrogen bonding and hydrophobic interactions between SPI and ulvan, as evidenced by zeta-potential and turbidity measurements. Structural and microstructural analyses of both individual SPI and composite films, using FT-IR, XRD, CD and SEM, demonstrated a high compatibility between HPH-treated SPI and ulvan. The incorporation of ulvan reduced the films' tensile strength (TS), but higher pressure significantly improved it (p < 0.05). Post-HPH modification, the films exhibited increased contact angle and swelling capacity (p < 0.05), indicating enhanced hydrophobicity. Higher pressure treatments resulted in more opaque and yellowish films, thereby diminishing ultraviolet light transmission. Thermal stability analyses, via TGA-DSC, showed that U-HSPI films had improved thermal stability compared to pure SPI films. Moreover, ulvan inclusion boosted the antioxidant capacity of SPI films, especially after HPH treatment. Overall, this study confirms that HPH modification substantially influences the properties and activities of SPIbased films, and the complex films based on SPI and ulvan with improved physicochemical and antioxidant properties exhibit a great potential in the food packaging field.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of sesame protein isolate modified by high-pressure homogenization, high-intensity ultrasound, and high-pressure processing on the colloidal stability of sesame paste: Determination of physicochemical, rheological, microstructural properties and storage stability
    Gul, Osman
    Sahin, Melike Seyda
    Saricaoglu, Furkan Turker
    Atalar, Ilyas
    INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2024, 96
  • [32] Influence of heat treatment before and/or after high-pressure homogenization on the structure and emulsification properties of soybean protein isolate
    Hu, Jiyong
    Yu, Bin
    Yuan, Chao
    Tao, Haiteng
    Wu, Zhengzong
    Dong, Die
    Lu, Yanmin
    Zhang, Zheng
    Cao, Yungang
    Zhao, Haibo
    Cheng, Yunhui
    Cui, Bo
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [33] Effect of high-pressure jet processing on the structure and physicochemical properties of plant protein isolate aqueous dispersions
    Oquendo, Liz Astorga
    Lewis, Grace
    Mahdinia, Ehsan
    Harte, Federico
    FOOD HYDROCOLLOIDS, 2023, 138
  • [34] Effect of dynamic high-pressure treatment on the interfacial and foaming properties of soy protein isolate-hydroxypropylmethylcelluloses systems
    Martinez, Karina D.
    Ganesan, Vykundeshwari
    Pilosof, Ana M. R.
    Harte, Federico M.
    FOOD HYDROCOLLOIDS, 2011, 25 (06) : 1640 - 1645
  • [35] Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions
    Fernandez-Avila, C.
    Trujillo, A. J.
    FOOD CHEMISTRY, 2016, 209 : 104 - 113
  • [36] Modifying the Physicochemical and Functional Properties of Water-soluble Protein from Mussels by High-pressure Homogenization Treatment
    Zou, Henan
    Zhao, Ning
    Shi, Xiaojie
    Sun, Shuang
    Yu, Cuiping
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2020, 16 (03)
  • [37] Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth
    Huang, Lixin
    Shen, Mingyue
    Zhang, Xiaowei
    Jiang, Lian
    Song, Qianqian
    Xie, Jianhua
    CARBOHYDRATE POLYMERS, 2018, 200 : 191 - 199
  • [38] Effects of high-pressure homogenization extraction on the physicochemical properties and antioxidant activity of large-leaf yellow tea polysaccharide conjugates
    Zhou, Cancan
    Huang, Yuzhe
    Chen, Jielin
    Chen, Hao
    Wu, Qianzhen
    Zhang, Kunfeng
    Li, Daxiang
    Li, Yong
    Chen, Yan
    PROCESS BIOCHEMISTRY, 2022, 122 : 87 - 94
  • [39] Effect of dynamic high-pressure microfluidization on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate
    Wang, Chen
    Wen, Han-xing
    Yang, Su
    Ma, Chang-yue
    Wang, Xu-mei
    Tu, Zong-Cai
    Shao, Yan-Hong
    Liu, Jun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283
  • [40] The synergistic effect of high pressure processing and pectin on the physicochemical stability and antioxidant properties of biopolymer complexes composed of soy protein and coumarin
    Jin, Bei
    Zhou, Xiaosong
    Zhong, Yongqi
    Li, Qiyong
    Zhang, Siyuan
    Mo, Huanping
    Liang, Jiaru
    PROCESS BIOCHEMISTRY, 2021, 104 (104) : 46 - 54