Molecule Crowding Strategy in Polymer Electrolytes Inducing Stable Interfaces for All-Solid-State Lithium Batteries

被引:26
作者
Zhang, Hong [1 ]
Deng, Jiahui [1 ]
Xu, Hantao [1 ]
Xu, Haoran [1 ]
Xiao, Zixin [1 ]
Fei, Fan [1 ]
Peng, Wei [1 ]
Xu, Lin [1 ,2 ,3 ]
Cheng, Yu [1 ]
Liu, Qin [1 ]
Hu, Guo-Hua [4 ]
Mai, Liqiang [1 ,2 ,3 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Longzhong Lab, Xiangyang 441000, Hubei, Peoples R China
[3] Wuhan Univ Technol Sanya, Hainan Inst, Wuhan 572000, Peoples R China
[4] Univ Lorraine, CNRS, LRGP, F-54001 Nancy, France
基金
中国国家自然科学基金;
关键词
15-crown-5; all-solid-state lithium batteries; interface stability; interfacial chemistry; molecule crowding strategy; IONIC-CONDUCTIVITY; DENDRITE; MECHANISMS; GROWTH;
D O I
10.1002/adma.202403848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes. The molecule crowding effect caused by 15-crown-5 leads to the abundant anions are forcing into the Li+ coordinated sheath to form anion-rich coordinated structure, which weakens the Li+ coordination and consequently boosts the Li+ transport. The confined anions decomposed at electrode/electrolyte interfaces to forming stable SEI and CEI, which achieve uniform lithium deposition, prevent electrolytes' continuous degradation, and suppress transition-metal crosstalk. image
引用
收藏
页数:12
相关论文
共 67 条
[1]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94
[2]   A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries [J].
Chen, Xiao-Ru ;
Yao, Yu-Xing ;
Yan, Chong ;
Zhang, Rui ;
Cheng, Xin-Bing ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7743-7747
[3]  
Cui Z., 2023, ANGEW CHEM-GER EDIT, V62
[4]   Polymer electrolytes and interfaces in solid-state lithium metal batteries [J].
Ding, Peipei ;
Lin, Zhiyuan ;
Guo, Xianwei ;
Wu, Lingqiao ;
Wang, Yongtao ;
Guo, Hongxia ;
Li, Liangliang ;
Yu, Haijun .
MATERIALS TODAY, 2021, 51 :449-474
[5]   Leaf-inspired quasi-solid electrolyte enables uniform lithium deposition and suppressed lithium-electrolyte reactions for lithium metal batteries [J].
Du, Lulu ;
Zhang, Bo ;
Yang, Chao ;
Cui, Lianmeng ;
Mai, Liqiang ;
Xu, Lin .
ENERGY STORAGE MATERIALS, 2023, 61
[6]   Solid-state lithium batteries: Safety and prospects [J].
Guo, Yong ;
Wu, Shichao ;
He, Yan-Bing ;
Kang, Feiyu ;
Chen, Liquan ;
Li, Hong ;
Yang, Quan-Hong .
ESCIENCE, 2022, 2 (02) :138-163
[7]   Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion [J].
Halat, David M. ;
Snyder, Rachel L. ;
Sundararaman, Siddharth ;
Choo, Youngwoo ;
Gao, Kevin W. ;
Hoffman, Zach J. ;
Abel, Brooks A. ;
Grundy, Lorena S. ;
Galluzzo, Michael D. ;
Gordon, Madeleine P. ;
Celik, Hasan ;
Urban, Jeffrey J. ;
Prendergast, David ;
Coates, Geoffrey W. ;
Balsara, Nitash P. ;
Reimer, Jeffrey A. .
CHEMISTRY OF MATERIALS, 2021, 33 (13) :4915-4926
[8]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196
[9]  
Han S., 2023, ANGEW CHEM-GER EDIT, V62
[10]   The passivity of lithium electrodes in liquid electrolytes for secondary batteries [J].
He, Xin ;
Bresser, Dominic ;
Passerini, Stefano ;
Baakes, Florian ;
Krewer, Ulrike ;
Lopez, Jeffrey ;
Mallia, Christopher Thomas ;
Shao-Horn, Yang ;
Cekic-Laskovic, Isidora ;
Wiemers-Meyer, Simon ;
Soto, Fernando A. ;
Ponce, Victor ;
Seminario, Jorge M. ;
Balbuena, Perla B. ;
Jia, Hao ;
Xu, Wu ;
Xu, Yaobin ;
Wang, Chongmin ;
Horstmann, Birger ;
Amine, Rachid ;
Su, Chi-Cheung ;
Shi, Jiayan ;
Amine, Khalil ;
Winter, Martin ;
Latz, Arnulf ;
Kostecki, Robert .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1036-1052