Short nanotubular Fe-N-C catalysts with curved catalytic sites and contributing regions for oxygen reduction reaction

被引:1
|
作者
Li, Ruixue [1 ]
Hao, Yun [1 ]
Liu, Yuhan [1 ]
Li, Peng [1 ]
Liu, Jingjun [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, 15 North Third Ring East Rd, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe-N-C; Solid-phase thermal migration; Off-plane; Oxygen reduction reaction; SOLID-PHASE SYNTHESIS; NONPRECIOUS METAL-CATALYSTS; NITROGEN-DOPED CARBON; POROUS-CARBON; MESOPOROUS CARBON; ORGANIC FRAMEWORK; ORR ACTIVITY; PERFORMANCE; ELECTROCATALYSTS; PRECURSOR;
D O I
10.1016/j.jallcom.2024.174002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The substantial advances of non-precious Fe-N-C materials with both high activity and stability to replace platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells remain a great challenge, since their intrinsic active site design and contributing microstructure exploration are still unclear. Herein, we propose a solid-phase thermal migration strategy to synthesize Fe, N co-doped nanocarbons with a short nanotubular structure, using ferrocene as Fe source and polyaniline (PANI) as N-doped carbon nanotubes (NCNTs) source. In acidic and alkaline environments, the thermally activated Fe-N-C exhibits efficient ORR performance, and half-wave potential is 30 mV higher than a commercial Pt/C (JM, 20 wt% Pt) in alkaline medium and only 100 mV less than the Pt/C in acidic media. Impressively, the catalyst used in zinc-air battery exhibits an outstanding power density of 144.74 mW center dot cm(-2), higher than the one assembled by the Pt/C (125.67 mW center dot cm(-2)). Combining experimental and density functional theory (DFT) calculation results, the superior ORR activity should be attributed to the formation of the efficient off-plane Fe-pyridinic-N-4 species at end of the nanotubes. More important, these zigzag-type Fe-pyridinic-N-4 sites at the end regions serve as the main active sites, leading to a higher ORR activity. This work opens a door to clarify the active catalytic site types and the contributing microregions of the Fe-N-C catalysts, providing ideas for designing non-noble metal catalysts with curved surfaces and rich edge structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fe-N-C Electrocatalysts with Densely Accessible Fe-N4 Sites for Efficient Oxygen Reduction Reaction
    Zhou, Yazhou
    Chen, Guangbo
    Wang, Qing
    Wang, Ding
    Tao, Xiafang
    Zhang, Tierui
    Feng, Xinliang
    Mullen, Klaus
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (34)
  • [22] Creating Defects in the Active Site of Fe-N-C Catalyst Promotes Catalytic Performance for Oxygen Reduction Reaction
    Yang, Kun-Zu
    Xu, Chao
    Guo, Peng-Peng
    Lu, Chen
    Xu, Ying
    Chi, Hua-Min
    Wei, Ping-Jie
    Liu, Jin-Gang
    CHEMNANOMAT, 2023, 9 (08)
  • [23] Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction
    Li, Lingfeng
    Wen, Yandi
    Han, Guokang
    Liu, Yuxin
    Song, Yajie
    Zhang, Wei
    Sun, Jia
    Du, Lei
    Kong, Fanpeng
    Ma, Yulin
    Gao, Yunzhi
    Wang, Jiajun
    Du, Chunyu
    Yin, Geping
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [24] Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts
    Li, Yahao
    Zang, Ketao
    Duan, Xuezhi
    Luo, Jun
    Chen, De
    JOURNAL OF ENERGY CHEMISTRY, 2021, 55 : 572 - 579
  • [25] A DFT Study on the Activity Origin of Fe-N-C Sites for Oxygen Reduction Reaction
    Zhang, Shishi
    Qin, Yanyang
    Ding, Shujiang
    Su, Yaqiong
    CHEMPHYSCHEM, 2022, 23 (15)
  • [26] Atomic Fe-N-C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction
    Wang, Minkang
    Wang, Xinming
    Liao, Tianhao
    Zhang, Xinglong
    Tang, Hui
    CHEMISTRYSELECT, 2022, 7 (22):
  • [27] Excavated Fe-N-C Sites for Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction
    Jeong, Beomgyun
    Shin, Dongyoon
    Jeon, Hongrae
    Ocon, Joey D.
    Mun, Bongjin Simon
    Baik, Jaeyoon
    Shin, Hyun-Joon
    Lee, Jaeyoung
    CHEMSUSCHEM, 2014, 7 (05) : 1289 - 1294
  • [28] A Stabilized Assisted Method for the Synthesis of Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Maouche, Chanez
    Zhou, Yazhou
    Li, Bing
    Cheng, Chao
    Wu, Zirui
    Han, Xue
    Rao, Shaosheng
    Li, Yi
    Rahman, Nasir
    Yang, Juan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
  • [29] In-Situ Silica Xerogel Assisted Facile Synthesis of Fe-N-C Catalysts with Dense Fe-Nx Active Sites for Efficient Oxygen Reduction
    Liu, Maosong
    Wang, Lijuan
    Zhang, Long
    Zhao, Yiran
    Chen, Kangmin
    Li, Yanxiao
    Yang, Xiaohua
    Zhao, Long
    Sun, Shuhui
    Zhang, Jianming
    SMALL, 2022, 18 (07)
  • [30] PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design
    Stariha, Sarah
    Artyushkova, Kateryna
    Workman, Michael J.
    Serov, Alexey
    Mckinney, Sam
    Halevi, Barr
    Atanassov, Plamen
    JOURNAL OF POWER SOURCES, 2016, 326 : 43 - 49