Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data

被引:3
|
作者
Stock, Marco [1 ,2 ,3 ,4 ]
Popp, Niclas [1 ,2 ,3 ]
Fiorentino, Jonathan [1 ,2 ,3 ,5 ]
Scialdone, Antonio [1 ,2 ,3 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, D-81377 Neuherberg, Germany
[2] Helmholtz Zentrum Munchen, Inst Funct Epigenet, German Res Ctr Environm Hlth, D-85764 Munich, Germany
[3] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Munich, Germany
[4] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, D-85354 Munich, Germany
[5] Fdn Ist Italiano Tecnol, Ctr Life Nano& Neurosci, Viale Regina Elena 291, I-00161 Rome, Italy
关键词
SMALL-WORLD; CENTRALITY; INTEGRATION; CHALLENGES; ROBUSTNESS; BIOLOGY;
D O I
10.1093/bioinformatics/btae267
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation In recent years, many algorithms for inferring gene regulatory networks from single-cell transcriptomic data have been published. Several studies have evaluated their accuracy in estimating the presence of an interaction between pairs of genes. However, these benchmarking analyses do not quantify the algorithms' ability to capture structural properties of networks, which are fundamental, e.g., for studying the robustness of a gene network to external perturbations. Here, we devise a three-step benchmarking pipeline called STREAMLINE that quantifies the ability of algorithms to capture topological properties of networks and identify hubs.Results To this aim, we use data simulated from different types of networks as well as experimental data from three different organisms. We apply our benchmarking pipeline to four inference algorithms and provide guidance on which algorithm should be used depending on the global network property of interest.Availability and implementation STREAMLINE is available at https://github.com/ScialdoneLab/STREAMLINE. The data generated in this study are available at https://doi.org/10.5281/zenodo.10710444.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
    David A. duVerle
    Sohiya Yotsukura
    Seitaro Nomura
    Hiroyuki Aburatani
    Koji Tsuda
    BMC Bioinformatics, 17
  • [22] CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
    duVerle, David A.
    Yotsukura, Sohiya
    Nomura, Seitaro
    Aburatani, Hiroyuki
    Tsuda, Koji
    BMC BIOINFORMATICS, 2016, 17
  • [23] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [24] RENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbations
    Masato Ishikawa
    Seiichi Sugino
    Yoshie Masuda
    Yusuke Tarumoto
    Yusuke Seto
    Nobuko Taniyama
    Fumi Wagai
    Yuhei Yamauchi
    Yasuhiro Kojima
    Hisanori Kiryu
    Kosuke Yusa
    Mototsugu Eiraku
    Atsushi Mochizuki
    Communications Biology, 6
  • [25] RENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbations
    Ishikawa, Masato
    Sugino, Seiichi
    Masuda, Yoshie
    Tarumoto, Yusuke
    Seto, Yusuke
    Taniyama, Nobuko
    Wagai, Fumi
    Yamauchi, Yuhei
    Kojima, Yasuhiro
    Kiryu, Hisanori
    Yusa, Kosuke
    Eiraku, Mototsugu
    Mochizuki, Atsushi
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [26] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [27] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672
  • [28] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [29] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    NATURE METHODS, 2023, 20 (05) : 665 - +
  • [30] Using neural networks for reducing the dimensions of single-cell RNA-Seq data
    Lin, Chieh
    Jain, Siddhartha
    Kim, Hannah
    Bar-Joseph, Ziv
    NUCLEIC ACIDS RESEARCH, 2017, 45 (17)