Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data

被引:3
|
作者
Stock, Marco [1 ,2 ,3 ,4 ]
Popp, Niclas [1 ,2 ,3 ]
Fiorentino, Jonathan [1 ,2 ,3 ,5 ]
Scialdone, Antonio [1 ,2 ,3 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, D-81377 Neuherberg, Germany
[2] Helmholtz Zentrum Munchen, Inst Funct Epigenet, German Res Ctr Environm Hlth, D-85764 Munich, Germany
[3] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Munich, Germany
[4] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, D-85354 Munich, Germany
[5] Fdn Ist Italiano Tecnol, Ctr Life Nano& Neurosci, Viale Regina Elena 291, I-00161 Rome, Italy
关键词
SMALL-WORLD; CENTRALITY; INTEGRATION; CHALLENGES; ROBUSTNESS; BIOLOGY;
D O I
10.1093/bioinformatics/btae267
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation In recent years, many algorithms for inferring gene regulatory networks from single-cell transcriptomic data have been published. Several studies have evaluated their accuracy in estimating the presence of an interaction between pairs of genes. However, these benchmarking analyses do not quantify the algorithms' ability to capture structural properties of networks, which are fundamental, e.g., for studying the robustness of a gene network to external perturbations. Here, we devise a three-step benchmarking pipeline called STREAMLINE that quantifies the ability of algorithms to capture topological properties of networks and identify hubs.Results To this aim, we use data simulated from different types of networks as well as experimental data from three different organisms. We apply our benchmarking pipeline to four inference algorithms and provide guidance on which algorithm should be used depending on the global network property of interest.Availability and implementation STREAMLINE is available at https://github.com/ScialdoneLab/STREAMLINE. The data generated in this study are available at https://doi.org/10.5281/zenodo.10710444.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data
    Kai Wang
    Yulong Li
    Fei Liu
    Xiaoli Luan
    Xinglong Wang
    Jingwen Zhou
    BMC Bioinformatics, 26 (1)
  • [2] Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data
    Zhang, Yaru
    Ma, Yunlong
    Huang, Yukuan
    Zhang, Yan
    Jiang, Qi
    Zhou, Meng
    Su, Jianzhong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2953 - 2961
  • [3] Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks
    Mao, Guo
    Pang, Zhengbin
    Zuo, Ke
    Wang, Qinglin
    Pei, Xiangdong
    Chen, Xinhai
    Liu, Jie
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [4] Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data
    Li, Yang
    Ma, Anjun
    Wang, Yizhong
    Guo, Qi
    Wang, Cankun
    Fu, Hongjun
    Liu, Bingqiang
    Ma, Qin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [5] Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
    Lee M.Y.Y.
    Kaestner K.H.
    Li M.
    Genome Biology, 24 (1)
  • [6] scENT for Revealing Gene Clusters From Single-Cell RNA-Seq Data
    Rao, Fan
    Chen, Minghan
    Yang, Defu
    Morrell, Bess
    Song, Qianqian
    Zhu, Wentao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 2266 - 2277
  • [7] Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data
    Stock, Marco
    Losert, Corinna
    Zambon, Matteo
    Popp, Niclas
    Lubatti, Gabriele
    Hoermanseder, Eva
    Heinig, Matthias
    Scialdone, Antonio
    MOLECULAR SYSTEMS BIOLOGY, 2025, 21 (03) : 214 - 230
  • [8] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [9] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
    Raharinirina, N. Alexia
    Peppert, Felix
    von Kleist, Max
    Schuette, Christof
    Sunkara, Vikram
    PATTERNS, 2021, 2 (09):