Bifunctional passivation by lewis-base molecules for efficient printable mesoscopic perovskite solar cells

被引:5
作者
Yang, Hang [1 ]
Zhao, Jianhong [2 ]
Ren, Xiaodong [1 ]
Zhou, Tong [1 ]
Zhang, Henbing [1 ]
Zhang, Weilong [1 ]
Zhang, Jin [1 ]
Hu, Guangzhi [2 ]
Zhang, Yuming [1 ]
Zhang, Wen-Hua [1 ]
Liu, Qingju [1 ]
机构
[1] Yunnan Univ, Natl Ctr Int Res Photoelect & Energy Mat, Sch Mat & Energy, Yunnan Key Lab Micro Nano Mat & Technol, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Univ, Inst Ecol Res & Pollut Control Plateau Lakes, Sch Ecol & Environm Sci, Kunming 650091, Yunnan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 96卷
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Carbon electrode; Thioacetamide; Interfacial passivation;
D O I
10.1016/j.jechem.2024.04.035
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Printable mesoscopic perovskite solar cells (PM-PSCs) possess notable merits in terms of costeffectiveness, easy manufacturing, and large scale applications. Nevertheless, the absence of a hole transport layer contributes to the exacerbation of carrier recombination, and the defects between the perovskite and electron transport layer (ETL) interfaces significantly decrease the efficiency of the devices. In this study, a bifunctional surface passivation approach is proposed by applying a thioacetamide (TAA) surfactant on the mesoporous TiO 2 interface. The results demonstrate that TAA molecules could interact with TiO 2 , thereby diminishing the oxygen vacancy defects. Additionally, the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb 2+ in perovskite and improve the morphology of perovskite, and decrease the trap-state density of perovskite. The TAA passivation mechanism improves the alignment of energy levels between TiO 2 and perovskite, facilitating electron transport and reducing carrier recombination. Consequently, the TAA-passivated device achieved a champion power conversion efficiency (PCE) of 17.86% with a high fill factor (FF) of 79.16% and an open-circuit voltage ( V OC ) of 0.971 V. This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs. (c) 2024 Published by ELSEVIER B.V. and Science Press on behalf of Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 45 条
[1]   Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions [J].
Azmi, Randi ;
Ugur, Esma ;
Seitkhan, Akmaral ;
Aljamaan, Faisal ;
Subbiah, Anand S. ;
Liu, Jiang ;
Harrison, George T. ;
Nugraha, Mohamad, I ;
Eswaran, Mathan K. ;
Babics, Maxime ;
Chen, Yuan ;
Xu, Fuzong ;
Allen, Thomas G. ;
Rehman, Atteq Ur ;
Wang, Chien-Lung ;
Anthopoulos, Thomas D. ;
Schwingenschlogl, Udo ;
De Bastiani, Michele ;
Aydin, Erkan ;
De Wolf, Stefaan .
SCIENCE, 2022, 376 (6588) :73-+
[2]   Thioacetamide-Assisted Crystallization of Lead-Free Perovskite Solar Cells for Improved Efficiency and Stability [J].
Bobba, Raja Sekhar ;
Ghimire, Nabin ;
Faheem, M. Bilal ;
Mabrouk, Sally ;
Baniya, Abiral ;
Narwal, Nisika ;
Zhang, Yuchen ;
Kaswekar, Poojan Indrajeet ;
Li, Hansheng ;
Saud, Madan Bahadur ;
Kumar, Mukesh ;
Qiao, Quinn .
SOLAR RRL, 2023, 7 (22)
[3]   Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges [J].
Chen, Binling ;
Yang, Zhuxian ;
Jia, Quanli ;
Ball, Richard J. ;
Zhu, Yanqiu ;
Xia, Yongde .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2023, 152
[4]   Scalable In-Plane Directional Crystallization for The Printable Hole-Conductor-Free Perovskite Solar Cell Based on The Carbon Electrode [J].
Cheng, Yanjie ;
Zheng, Ziwei ;
Liu, Shuang ;
Xiang, Junwei ;
Han, Chuanzhou ;
Xia, Minghao ;
Zhang, Guodong ;
Qi, Jianhang ;
Ma, Yongming ;
Chen, Kai ;
Tao, Yiran ;
Lu, Xinhui ;
Mei, Anyi ;
Han, Hongwei .
ADVANCED ENERGY MATERIALS, 2024, 14 (08)
[5]   Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells [J].
Fang, Zhimin ;
Jia, Lingbo ;
Yan, Nan ;
Jiang, Xiaofen ;
Ren, Xiaodong ;
Yang, Shangfeng ;
Liu, Shengzhong .
INFOMAT, 2022, 4 (06)
[6]   Surface Lattice Perturbation of Electron Transport Layer Reducing Oxygen Vacancies for Positive Photovoltaic Effect [J].
He, Jingshan ;
Ding, Tian ;
Wu, Wenjun .
SOLAR RRL, 2022, 6 (10)
[7]   40.1% Record Low-Light Solar-Cell Efficiency by Holistic Trap-Passivation using Micrometer-Thick Perovskite Film [J].
He, Xilai ;
Chen, Jiangzhao ;
Ren, Xiaodong ;
Zhang, Lu ;
Liu, Yucheng ;
Feng, Jiangshan ;
Fang, Junjie ;
Zhao, Kui ;
Liu, Shengzhong .
ADVANCED MATERIALS, 2021, 33 (27)
[8]   Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency [J].
Heo, D. Y. ;
Jang, W. J. ;
Kim, S. Y. .
MATERIALS TODAY CHEMISTRY, 2022, 26
[9]   Multidentate anchoring strategy for synergistically modulating crystallization and stability towards efficient perovskite solar cells [J].
Hu, Ping ;
Zhou, Wenbo ;
Chen, Junliang ;
Xie, Xin ;
Zhu, Jingwei ;
Zheng, Yuxin ;
Li, Yafeng ;
Li, Junming ;
Wei, Mingdeng .
CHEMICAL ENGINEERING JOURNAL, 2024, 480
[10]   Surface Modification of TiO2 for Perovskite Solar Cells [J].
Hu, Wanpei ;
Yang, Shangfeng ;
Yang, Shihe .
TRENDS IN CHEMISTRY, 2020, 2 (02) :148-162