Predictive Value of Artificial Intelligence-Enabled Electrocardiography in Patients With Takotsubo Cardiomyopathy

被引:6
作者
Kanaji, Yoshihisa [1 ,2 ]
Ozcan, Ilke [1 ]
Tryon, David N. [1 ]
Ahmad, Ali [1 ]
Sara, Jaskanwal Deep Singh [1 ]
Lewis, Brad [3 ]
Friedman, Paul [1 ]
Noseworthy, Peter A. [1 ]
Lerman, Lilach O. [4 ]
Kakuta, Tsunekazu [2 ]
Attia, Zachi I. [1 ]
Lerman, Amir [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW, Rochester, MN 55905 USA
[2] Tsuchiura Kyodo Gen Hosp, Div Cardiovasc Med, Ibaraki, Japan
[3] Mayo Clin, Div Clin Trials & Biostat, Rochester, MN USA
[4] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2024年 / 13卷 / 05期
关键词
artificial intelligence; electrocardiography; Takotsubo cardiomyopathy; TAKO-TSUBO; NATURAL-HISTORY; PROGNOSIS; OUTCOMES; FIBRILLATION; DYSFUNCTION; MORTALITY;
D O I
10.1161/JAHA.123.031859
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Recent studies have indicated high rates of future major adverse cardiovascular events in patients with Takotsubo cardiomyopathy (TC), but there is no well-established tool for risk stratification. This study sought to evaluate the prognostic value of several artificial intelligence-augmented ECG (AI-ECG) algorithms in patients with TC. METHODS AND RESULTS: This study examined consecutive patients in the prospective and observational Mayo Clinic Takotsubo syndrome registry. Several previously validated AI-ECG algorithms were used for the estimation of ECG- age, probability of low ejection fraction, and probability of atrial fibrillation. Multivariable models were constructed to evaluate the association of AI-ECG and other clinical characteristics with major adverse cardiac events, defined as cardiovascular death, recurrence of TC, nonfatal myocardial infarction, hospitalization for congestive heart failure, and stroke. In the final analysis, 305 patients with TC were studied over a median follow-up of 4.8years. Patients with future major adverse cardiac events were more likely to be older, have a history of hypertension, congestive heart failure, worse renal function, as well as high-risk AI-ECG findings compared with those without. Multivariable Cox proportional hazards analysis indicated that the presence of 2 or 3 high-risk findings detected by AI-ECG remained a significant predictor of major adverse cardiac events in patients with TC after adjustment by conventional risk factors (hazard ratio, 4.419 [95% CI, 1.833-10.66], P=0.001). CONCLUSIONS: The combined use of AI-ECG algorithms derived from a single 12-lead ECG might detect subtle underlying patterns associated with worse outcomes in patients with TC. This approach might be beneficial for stratifying high-risk patients with TC.
引用
收藏
页数:11
相关论文
共 33 条
[1]  
Ahmad A, 2021, EUR HEART J, V42, P1162
[2]   Development of the AI-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis [J].
Ahn, Joseph C. ;
Attia, Zachi, I ;
Rattan, Puru ;
Mullan, Aidan F. ;
Buryska, Seth ;
Allen, Alina M. ;
Kamath, Patrick S. ;
Friedman, Paul A. ;
Shah, Vijay H. ;
Noseworthy, Peter A. ;
Simonetto, Douglas A. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2022, 117 (03) :424-432
[3]   External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction [J].
Attia, Itzhak Zachi ;
Tseng, Andrew S. ;
Benavente, Ernest Diez ;
Medina-Inojosa, Jose R. ;
Clark, Taane G. ;
Malyutina, Sofia ;
Kapa, Suraj ;
Schirmer, Henrik ;
Kudryavtsev, Alexander, V ;
Noseworthy, Peter A. ;
Carter, Rickey E. ;
Ryabikov, Andrew ;
Perel, Pablo ;
Friedman, Paul A. ;
Leon, David A. ;
Lopez-Jimenez, Francisco .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 329 :130-135
[4]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[7]  
Collet JP, 2021, REV ESP CARDIOL, V74, DOI [10.1016/j.rec.2021.05.002, 10.1093/eurheartj/ehaa575]
[8]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1111/eci.12376, 10.1002/bjs.9736, 10.1016/j.jclinepi.2014.11.010, 10.1136/bmj.g7594, 10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639, 10.1016/j.eururo.2014.11.025, 10.7326/M14-0698]
[9]   Outcomes in Takotsubo Syndrome Following Left Ventricular Ejection Fraction Improvement [J].
Durowoju, Rasheed ;
Li, Song ;
Huang, Gary S. .
AMERICAN JOURNAL OF CARDIOLOGY, 2022, 169 :136-142
[10]   Impact of Atrial Fibrillation on Outcome in Takotsubo Syndrome: Data From the International Takotsubo Registry [J].
El-Battrawy, Ibrahim ;
Cammann, Victoria L. ;
Kato, Ken ;
Szawan, Konrad A. ;
Di Vece, Davide ;
Rossi, Aurelio ;
Wischnewsky, Manfred ;
Hermes-Laufer, Julia ;
Gili, Sebastiano ;
Citro, Rodolfo ;
Bossone, Eduardo ;
Neuhaus, Michael ;
Franke, Jennifer ;
Meder, Benjamin ;
Jaguszewski, Milosz ;
Noutsias, Michel ;
Knorr, Maike ;
Heiner, Susanne ;
D'Ascenzo, Fabrizio ;
Dichtl, Wolfgang ;
Burgdorf, Christof ;
Kherad, Behrouz ;
Tschoepe, Carsten ;
Sarcon, Annahita ;
Shinbane, Jerold ;
Rajan, Lawrence ;
Michels, Guido ;
Pfister, Roman ;
Cuneo, Alessandro ;
Jacobshagen, Claudius ;
Karakas, Mahir ;
Koenig, Wolfgang ;
Pott, Alexander ;
Meyer, Philippe ;
Arroja, Jose David ;
Banning, Adrian ;
Cuculi, Florim ;
Kobza, Richard ;
Fischer, Thomas A. ;
Vasankari, Tuija ;
Airaksinen, K. E. Juhani ;
Napp, L. Christian ;
Budnik, Monika ;
Dworakowski, Rafal ;
MacCarthy, Philip ;
Kaiser, Christoph ;
Osswald, Stefan ;
Galiuto, Leonarda ;
Chan, Christina ;
Bridgman, Paul .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (15)