IDGM: an approach to estimate the graphical model of interval-valued data

被引:0
作者
Wu, Qiying [1 ,2 ]
Wang, Huiwen [1 ,3 ]
Lu, Shan [4 ]
机构
[1] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
[2] Beijing Key Lab Emergence Support Simulat Technol, Beijing 100191, Peoples R China
[3] Beihang Univ, Key Lab Complex Syst Anal Management & Decis, Minist Educ, Beijing 100191, Peoples R China
[4] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphical model; Interval-valued data; Graphical lasso; Conditional dependence structure; INVERSE COVARIANCE ESTIMATION; INFERENCE; LASSO; BLOCK;
D O I
10.1007/s11222-024-10504-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Graphical models describe the conditional dependence structure among random variables via vertices and edges and have attracted increasing attention in recent years. However, when the variable is interval-valued instead of a scalar, it remains unclear how the graphical model can be estimated since interval-valued data impose additional complexity, including the lower bound should not be greater than the upper bound and each interval is itself a two-dimensional object. In this paper, we propose an algorithm, named the interval-valued data graphical model (IDGM), to realize such estimation, extending the graphical model concept to interval-valued data modeling. To address the complexity of interval-valued data, we apply the midpoints and log-ranges transformation to engage the center and range information of an interval. Then, we identify the network structure based on a variant 2x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2 \times 2 $$\end{document} block-wise sparsity graphical lasso that incorporates the penalty term of the precision matrix. The numerical simulations along with two real-world applications in the fields of macroeconomics and finance show the advantages of IDGM over the competing methods and demonstrate the effectiveness of IDGM in graphical model estimation for interval-valued data.
引用
收藏
页数:18
相关论文
共 42 条
  • [1] Operational and financial performance of Italian airport companies: A dynamic graphical model
    Abbruzzo, Antonino
    Fasone, Vincenzo
    Scuderi, Raffaele
    [J]. TRANSPORT POLICY, 2016, 52 : 231 - 237
  • [2] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [3] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [4] Beck A, 2017, MOS-SIAM SER OPTIMIZ, P1, DOI 10.1137/1.9781611974997
  • [5] Billard L., 2002, CLASSIFICATION CLUST, P281, DOI DOI 10.1007/978-3-642-56181-8_31
  • [6] Modelling interval data with Normal and Skew-Normal distributions
    Brito, Paula
    Pedro Duarte Silva, A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (01) : 3 - 20
  • [7] Capturing Dynamic Connectivity From Resting State fMRI Using Time-Varying Graphical Lasso
    Cai, Biao
    Zhang, Gemeng
    Zhang, Aiying
    Stephen, Julia M.
    Wilson, Tony W.
    Calhoun, Vince D.
    Wang, Yu-Ping
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (07) : 1852 - 1862
  • [8] The joint graphical lasso for inverse covariance estimation across multiple classes
    Danaher, Patrick
    Wang, Pei
    Witten, Daniela M.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) : 373 - 397
  • [9] Fuzzy clustering of interval-valued data with City-Block and Hausdorff distances
    de Carvalho, Francisco de A. T.
    Simoes, Eduardo C.
    [J]. NEUROCOMPUTING, 2017, 266 : 659 - 673
  • [10] Diday E., 2008, Symbolic data analysis and the SODAS software