A DC to 25 MHz Current Sensing Interface for Hall-Effect Sensor

被引:3
|
作者
Hassan, Ayesha [1 ]
Mahar, Asma [1 ]
Shetty, Satish [2 ]
Lalwani, Anand Vikas [3 ]
Faruque, K. Asif [1 ]
Paul, Riya [1 ]
Senesky, Debbie G. [3 ,4 ]
Salamo, Gregory J. [2 ]
Mantooth, H. Alan [1 ]
机构
[1] Univ Arkansas, Dept Elect Engn, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Sensors; Magnetic sensors; Bandwidth; Spinning; Voltage; Choppers (circuits); Passive filters; Hall-effect devices; magnetic-field sensors; sensor readout circuits; sensor signal conditioning; OFFSET;
D O I
10.1109/JSEN.2024.3360462
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dc to 25 MHz readout interface (ROI) design for Hall-effect sensors is presented. The current sensing system is comprised of a high-bandwidth aluminum gallium nitride/gallium nitride (AlGaN/GaN) or aluminum gallium arsenide/gallium arsenide (AlGaAs/GaAs) Hall-effect sensor and an on-chip fast ROI. The interface makes use of multisignal paths, utilizing a two-way current spinning technique to minimize offset at dc while using high- pass filtering to eliminate offset at the high frequencies. The usage of two sensors and signal paths makes it possible to take advantage of the full bandwidth of the sensor. The summed output is the desired high- bandwidth signal proportional to the current or the magnetic field to be detected. The system achieves a rise time of 40 ns in response to a current pulse, resulting in a noninvasive fast current detection solution. The die area of the ROI is 2850 by 200 mu m . When testing with a current trace at 1.5 mm from the sensor and using a ferrite-core magnetic field concentrator, the current sensitivity is observed to be 12.7 mV/A.
引用
收藏
页码:10316 / 10325
页数:10
相关论文
共 50 条
  • [41] HALL-EFFECT UNDER NULL CURRENT CONDITIONS
    MANI, RG
    VONKLITZING, K
    APPLIED PHYSICS LETTERS, 1994, 64 (10) : 1262 - 1264
  • [42] COMMENTS ON THE WIDOM HALL-EFFECT CURRENT FORMULA
    HAJDU, J
    GUMMICH, U
    PHYSICS LETTERS A, 1983, 99 (08) : 396 - 398
  • [43] Current Imbalance in Parallel Battery Strings Measured Using a Hall-Effect Sensor Array
    Luca, Robert
    Whiteley, Michael
    Neville, Toby
    Tranter, Tom
    Weaving, Julia
    Marco, James
    Shearing, Paul R.
    Brett, Dan J. L.
    ENERGY TECHNOLOGY, 2021, 9 (04)
  • [44] Shielding Technique for Noise Reduction in Hall-Effect Current Sensor of Voltage Source Inverter
    Yoo, Jiwon
    Lee, Yoon-Ro
    Kim, Hwigon
    Sul, Seung-Ki
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [45] An Approach to Wire-Wound Hall-Effect Based Current Sensor for Offset Reduction
    Ranasingh, Soumyaranjan
    Pradhan, Tapan
    Raju, D. Koteswara
    Singh, Arvind R.
    Piantini, Alexandre
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 2006 - 2015
  • [46] Planar Hall-Effect Bridge Sensor With NiFeX (X = Cu, Ag, and Au) Sensing Layer
    Qejvanaj, F.
    Mazraati, H.
    Jiang, S.
    Persson, A.
    Sani, S. R.
    Chung, S.
    Magnusson, F.
    Akerman, J.
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11)
  • [47] Integration of Triaxial Hall-Effect Sensor Technology for Gear Position Sensing in Commercial Vehicle Transmissions
    Manyala, John O.
    Fritz, Todd
    Atashbar, Massood Z.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (03) : 664 - 672
  • [48] ANALYSIS OF A LINEAR POSITION SENSOR WITH A HALL-EFFECT ELEMENT
    GRECHISHKIN, RM
    AFANASIEVA, LE
    PASTUSHENKOV, YG
    MAKSIMOV, NN
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1994, 5 (07) : 853 - 860
  • [49] 3-Axes MEMS Hall-Effect Sensor
    Cai, Wei
    Chan, Jeremy
    Garmire, David
    2011 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2011, : 141 - 144
  • [50] Study of EPS Hall-effect Torque Sensor Technology
    Li, Tan
    Shi, Guobiao
    EQUIPMENT MANUFACTURING TECHNOLOGY, 2012, 422 : 107 - 112