A DC to 25 MHz Current Sensing Interface for Hall-Effect Sensor

被引:3
|
作者
Hassan, Ayesha [1 ]
Mahar, Asma [1 ]
Shetty, Satish [2 ]
Lalwani, Anand Vikas [3 ]
Faruque, K. Asif [1 ]
Paul, Riya [1 ]
Senesky, Debbie G. [3 ,4 ]
Salamo, Gregory J. [2 ]
Mantooth, H. Alan [1 ]
机构
[1] Univ Arkansas, Dept Elect Engn, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Sensors; Magnetic sensors; Bandwidth; Spinning; Voltage; Choppers (circuits); Passive filters; Hall-effect devices; magnetic-field sensors; sensor readout circuits; sensor signal conditioning; OFFSET;
D O I
10.1109/JSEN.2024.3360462
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dc to 25 MHz readout interface (ROI) design for Hall-effect sensors is presented. The current sensing system is comprised of a high-bandwidth aluminum gallium nitride/gallium nitride (AlGaN/GaN) or aluminum gallium arsenide/gallium arsenide (AlGaAs/GaAs) Hall-effect sensor and an on-chip fast ROI. The interface makes use of multisignal paths, utilizing a two-way current spinning technique to minimize offset at dc while using high- pass filtering to eliminate offset at the high frequencies. The usage of two sensors and signal paths makes it possible to take advantage of the full bandwidth of the sensor. The summed output is the desired high- bandwidth signal proportional to the current or the magnetic field to be detected. The system achieves a rise time of 40 ns in response to a current pulse, resulting in a noninvasive fast current detection solution. The die area of the ROI is 2850 by 200 mu m . When testing with a current trace at 1.5 mm from the sensor and using a ferrite-core magnetic field concentrator, the current sensitivity is observed to be 12.7 mV/A.
引用
收藏
页码:10316 / 10325
页数:10
相关论文
共 50 条
  • [31] Position and level sensing using Hall-effect sensing technology
    Pepka, Gary
    SENSOR REVIEW, 2007, 27 (01) : 29 - 34
  • [32] DC HALL-EFFECT MEASUREMENTS ON TTF-TCNQ
    COOPER, JR
    MILJAK, M
    DELPLANQUE, G
    JEROME, D
    WEGER, M
    FABRE, JM
    GIRAL, L
    JOURNAL DE PHYSIQUE, 1977, 38 (09): : 1097 - 1103
  • [33] DYNAMIC CURRENT OSCILLATIONS IN THE QUANTUM HALL-EFFECT
    TAO, R
    WIDOM, A
    PHYSICS LETTERS A, 1986, 117 (09) : 481 - 484
  • [34] THERMODYNAMIC DERIVATION OF THE HALL-EFFECT CURRENT - COMMENT
    OJI, H
    PHYSICS LETTERS A, 1983, 98 (03) : 127 - 128
  • [35] ON THE CURRENT COMPENSATION IN THE INTEGER QUANTUM HALL-EFFECT
    JANSSEN, M
    HAJDU, J
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 70 (04): : 461 - 468
  • [36] EFFECT OF THE CURRENT ON THE PLATEAU WIDTH IN THE QUANTUM HALL-EFFECT
    ZAVARITSKII, VN
    ANZIN, VB
    JETP LETTERS, 1983, 38 (05) : 294 - 296
  • [37] HALL-EFFECT IN PLASMA CURRENT SHEET CONFIGURATION
    YAGI, Y
    KAWASHIMA, N
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1985, 24 (04): : L259 - L262
  • [38] IMAGING THE CURRENT DISTRIBUTION IN THE QUANTUM HALL-EFFECT
    KENT, AJ
    MCKITTERICK, DJ
    HAWKER, P
    HENINI, M
    HELVETICA PHYSICA ACTA, 1992, 65 (2-3): : 331 - 332
  • [39] CURRENT SCALING IN THE INTEGER QUANTUM HALL-EFFECT
    WEI, HP
    ENGEL, LW
    TSUI, DC
    PHYSICAL REVIEW B, 1994, 50 (19): : 14609 - 14612
  • [40] CURRENT CONTACTS AND THE BREAKDOWN OF THE QUANTUM HALL-EFFECT
    VANSON, PC
    KRUITHOF, GH
    KLAPWIJK, TM
    PHYSICAL REVIEW B, 1990, 42 (17): : 11267 - 11273