Multichannel Adaptive Data Mixture Augmentation for Graph Neural Networks

被引:0
作者
Ye, Zhonglin [1 ]
Zhou, Lin [1 ]
Li, Mingyuan [1 ]
Zhang, Wei [1 ]
Liu, Zhen [2 ]
Zhao, Haixing [1 ]
机构
[1] Qinghai Normal Univ, Xining, Peoples R China
[2] Nagasaki Inst Appl Sci, Nagasaki, Japan
关键词
Graph Neural Network; Mixed DataAugmentation; Multi-channel Graph Neural Network; Polynomial Gaussian;
D O I
10.4018/IJDWM.349975
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Graph neural networks (GNNs) have demonstrated significant potential in analyzing complex graph-structured data. However, conventional GNNs encounter challenges in effectively incorporating global and local features. Therefore, this paper introduces a novel approach for GNN called multichannel adaptive data mixture augmentation (MAME-GNN). It enhances a GNN by adopting a multi-channel architecture and interactive learning to effectively capture and coordinate the interrelationships between local and global graph structures. Additionally, this paper introduces the polynomial-Gaussian mixture graph interpolation method to address the problem of single and sparse graph data, which generates diverse and nonlinear transformed samples, improving the model's generalization ability. The proposed MAME-GNN is validated through extensive experiments on publicly available datasets, showcasing its effectiveness. Compared to existing GNN models, the MAME-GNN exhibits superior performance, significantly enhancing the model's robustness and generalization ability.
引用
收藏
页数:14
相关论文
共 33 条
[1]   A Survey on Embedding Dynamic Graphs [J].
Barros, Claudio D. T. ;
Mendonca, Matheus R. F. ;
Vieira, Alex B. ;
Ziviani, Artur .
ACM COMPUTING SURVEYS, 2023, 55 (01)
[2]  
Bastings Joost, 2017, P 2017 C EMP METH NA, P1957
[3]   Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers [J].
Bayer, Markus ;
Kaufhold, Marc-Andre ;
Buchhold, Bjorn ;
Keller, Marcel ;
Dallmeyer, Joerg ;
Reuter, Christian .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (01) :135-150
[4]  
Chen J., 2018, P 30 INT C NEUR INF, P844
[5]  
Ding Kaize, 2022, ACM SIGKDD Explorations Newsletter, P61, DOI 10.1145/3575637.3575646
[6]  
Ding K, 2019, Data Min, P594
[7]   Graph Learning: A Survey [J].
Xia F. ;
Sun K. ;
Yu S. ;
Aziz A. ;
Wan L. ;
Pan S. ;
Liu H. .
IEEE Transactions on Artificial Intelligence, 2021, 2 (02) :109-127
[8]   HGNN+: General Hypergraph Neural Networks [J].
Gao, Yue ;
Feng, Yifan ;
Ji, Shuyi ;
Ji, Rongrong .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) :3181-3199
[9]   Utilizing graph machine learning within drug discovery and development [J].
Gaudelet, Thomas ;
Day, Ben ;
Jamasb, Arian R. ;
Soman, Jyothish ;
Regep, Cristian ;
Liu, Gertrude ;
Hayter, Jeremy B. R. ;
Vickers, Richard ;
Roberts, Charles ;
Tang, Jian ;
Roblin, David ;
Blundell, Tom L. ;
Bronstein, Michael M. ;
Taylor-King, Jake P. .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[10]   Graph Representation Learning Meets Computer Vision: A Survey [J].
Jiao L. ;
Chen J. ;
Liu F. ;
Yang S. ;
You C. ;
Liu X. ;
Li L. ;
Hou B. .
IEEE Transactions on Artificial Intelligence, 2023, 4 (01) :2-22