Experimental Time-of-Arrival Quantum Random Number Generation with Dead Time Overestimation

被引:0
作者
Schranz, Agoston [1 ,2 ]
Solymos, Balazs [1 ]
Telek, Miklos [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Fac Elect Engn & Informat, Dept Networked Syst & Serv, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] HUNREN BME Informat Syst Res Grp, Budapest, Hungary
来源
2024 7TH INTERNATIONAL BALKAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, BALKANCOM | 2024年
基金
匈牙利科学研究基金会;
关键词
random number generation; semiconductor lasers; time measurement; time series analysis;
D O I
10.1109/BalkanCom61808.2024.10557176
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A measurement-based validation of theoretical results on quantum random number generators (QRNGs) is considered in the paper. We have designed an experimental setup built around a single-photon detector to record random datasets of photon arrival time differences with various parameter settings. The collected datasets are used to generate random bit sequences with and without dead time overestimation. The statistical properties of the bit sequences are compared with analytical results on the one hand and assessed with four of the most popular statistical test suites on the other hand. The measurement results validate that the dead time overestimation algorithm helps to eliminate unwanted correlations from the generated bit sequences in practice.
引用
收藏
页码:168 / 173
页数:6
相关论文
共 18 条
  • [11] Quantum Random Number Generator with One and Two Entropy Sources
    Shaw, Gautam
    Sivaram, S. R.
    Prabhakar, Anil
    [J]. 2019 25TH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2019,
  • [12] Solymos B., 2024, Correlation avoidance in single-photon detecting quantum random number generators by dead time overestimation, DOI [10.21203/rs.3.rs-3914156/v1, DOI 10.21203/RS.3.RS-3914156/V1]
  • [13] Certification of the efficient random number generation technique based on single-photon detector arrays and time-to-digital converters
    Stanco, Andrea
    Marangon, Davide G.
    Vallone, Giuseppe
    Burri, Samuel
    Charbon, Edoardo
    Villoresi, Paolo
    [J]. IET QUANTUM COMMUNICATION, 2021, 2 (03): : 74 - 79
  • [14] Quantum random number generator based on photonic emission in semiconductors
    Stipcevic, M.
    Rogina, B. Medved
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (04)
  • [15] Model, Validation, and Characterization of a Robust Quantum Random Number Generator Based on Photon Arrival Time Comparison
    Tomasi, Alessandro
    Meneghetti, Alessio
    Massari, Nicola
    Gaspari, Leonardo
    Rucatti, Daniele
    Xu, Hesong
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (18) : 3843 - 3854
  • [16] Integration of QKD Channels to Classical High-speed Optical Communication Networks
    Udvary E.
    [J]. Infocommunications Journal, 2023, 15 (04): : 2 - 9
  • [17] Walker J., 2008, ENT: a pseudorandom number sequence test program
  • [18] Advances in device-independent quantum key distribution
    Zapatero, Victor
    van Leent, Tim
    Arnon-Friedman, Rotem
    Liu, Wen-Zhao
    Zhang, Qiang
    Weinfurter, Harald
    Curty, Marcos
    [J]. NPJ QUANTUM INFORMATION, 2023, 9 (01)