Research advances in triboelectric nanogenerators based on theoretical simulations

被引:0
|
作者
Li, Wenhao [1 ]
Guo, Yanmin [1 ]
Wang, Kun [1 ]
Zhang, Shuqian [1 ]
Qiu, Jiawen [1 ]
Li, Junlong [1 ]
Suk, Chan Hee [3 ]
Wu, Chaoxing [1 ,2 ]
Zhou, Xiongtu [1 ,2 ]
Zhang, Yongai [1 ,2 ]
Guo, Tailiang [1 ,2 ]
Kim, Tae Whan [3 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
[2] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Peoples R China
[3] Hanyang Univ, Dept Elect & Comp Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Triboelectric nanogenerator; Energy conversion; Theoretical simulation; MPPT TECHNIQUES; FERMI-LEVEL; WAVE ENERGY; SURFACE; OUTPUT; ELECTRIFICATION; CHARGE; MODEL;
D O I
10.1016/j.nanoen.2024.109724
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The triboelectric nanogenerator (TENG) based on the coupling effect of contact electrification and electrostatic induction, with the advantages of low cost, flexibility, and high energy conversion efficiency, is an emerging energy conversion device with prospects for broad applications in micro/nano energy, wearable devices, and self-powered sensors. The results from theoretical simulation studies of TENGs will not only lead to an understanding of the working mechanism underlying an optimized device but are also expected to guide practical applications. This article summarizes the research progress in theoretical simulations of TENGs, including the charge transfer mechanism, the optimization of device performance, the equivalent circuit of the device, and the power management circuit. That progress has also provided valuable insights into ways to improve the energy conversion efficiency and the power generation capability. We hope that this paper will be helpful to those engaged in research of TENG-related fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Advances in MXene-based triboelectric nanogenerators
    Ghorbanzadeh, Sadegh
    Zhang, Wei
    NANO ENERGY, 2024, 125
  • [2] Advances in Green Triboelectric Nanogenerators
    Du, Taili
    Chen, Zhixiang
    Dong, Fangyang
    Cai, Hu
    Zou, Yongjiu
    Zhang, Yuewen
    Sun, Peiting
    Xu, Minyi
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
  • [3] Advances in Bioresorbable Triboelectric Nanogenerators
    Kang, Minki
    Lee, Dong-Min
    Rubab, Najaf
    Kim, So-Hee
    Hyun, Inah
    Kim, Sang-Woo
    CHEMICAL REVIEWS, 2023, 123 (19) : 11559 - 11618
  • [4] Advances in Bioinspired Triboelectric Nanogenerators
    Mayer, Mylan
    Xiao, Xiao
    Yin, Junyi
    Chen, Guorui
    Xu, Jing
    Chen, Jun
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (12)
  • [5] Theoretical systems of triboelectric nanogenerators
    Niu, Simiao
    Wang, Zhong Lin
    NANO ENERGY, 2015, 14 : 161 - 192
  • [6] Advances in health rehabilitation devices based on triboelectric nanogenerators
    Gai, Yansong
    Jiang, Yonggang
    Li, Zhou
    NANO ENERGY, 2023, 116
  • [7] Advances in electrospun nanofibers for triboelectric nanogenerators
    Li, Yi
    Xiao, Song
    Luo, Yi
    Tian, Shuangshuang
    Tang, Ju
    Zhang, Xiaoxing
    Xiong, Jiaqing
    NANO ENERGY, 2022, 104
  • [8] Advances in Inorganic Nanomaterials for Triboelectric Nanogenerators
    Zhang, Renyun
    Olin, Hakan
    ACS NANOSCIENCE AU, 2021, 2 (01): : 12 - 31
  • [9] Advances in triboelectric nanogenerators for biomedical sensing
    Tat, Trinny
    Libanori, Alberto
    Au, Christian
    Yau, Andy
    Chen, Jun
    BIOSENSORS & BIOELECTRONICS, 2021, 171
  • [10] Recent advances in ocean energy harvesting based on triboelectric nanogenerators
    Song, Changhui
    Zhu, Xiao
    Wang, Maoli
    Yang, Ping
    Chen, Linke
    Hong, Le
    Cui, Weicheng
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53