Role of spatial coherence in diffractive optical neural networks

被引:5
作者
Filipovich, M. atthew j. [1 ]
Malyshev, A. leksei [1 ]
Lvovsky, A. I. [1 ,2 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford, England
[2] Wood Ctr Innovat, Lumai, Quarry Rd,Headington, Oxford, England
基金
“创新英国”项目; 欧盟地平线“2020”;
关键词
ARTIFICIAL-INTELLIGENCE; BACKPROPAGATION;
D O I
10.1364/OE.523619
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Diffractive optical neural networks (DONNs) have emerged as a promising optical hardware platform for ultra -fast and energy -efficient signal processing for machine learning tasks, particularly in computer vision. Previous experimental demonstrations of DONNs have only been performed using coherent light. However, many real -world DONN applications require consideration of the spatial coherence properties of the optical signals. Here, we study the role of spatial coherence in DONN operation and performance. We propose a numerical approach to efficiently simulate DONNs under incoherent and partially coherent input illumination and discuss the corresponding computational complexity. As a demonstration, we train and evaluate simulated DONNs on the MNIST dataset of handwritten digits to process light with varying spatial coherence.
引用
收藏
页码:22986 / 22997
页数:12
相关论文
共 49 条
[21]  
Mandel L., 1995, Optical Coherence and Quantum Optics
[22]   Brain-inspired computing needs a master plan [J].
Mehonic, A. ;
Kenyon, A. J. .
NATURE, 2022, 604 (7905) :255-260
[23]   At the intersection of optics and deep learning: statistical inference, computing, and inverse design [J].
Mengu, Deniz ;
Rahman, Md Sadman Sakib ;
Luo, Yi ;
Li, Jingxi ;
Kulce, Onur ;
Ozcan, Aydogan .
ADVANCES IN OPTICS AND PHOTONICS, 2022, 14 (02) :209-290
[24]   All-Optical Phase Recovery: Diffractive Computing for Quantitative Phase Imaging [J].
Mengu, Deniz ;
Ozcan, Aydogan .
ADVANCED OPTICAL MATERIALS, 2022, 10 (15)
[25]   Analysis of Diffractive Optical Neural Networks and Their Integration With Electronic Neural Networks [J].
Mengu, Deniz ;
Luo, Yi ;
Rivenson, Yair ;
Ozcan, Aydogan .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[26]   Massively parallel amplitude-only Fourier neural network [J].
Miscuglio, Mario ;
Hu, Zibo ;
Li, Shurui ;
George, Jonathan K. ;
Capanna, Roberto ;
Dalir, Hamed ;
Bardet, Philippe M. ;
Gupta, Puneet ;
Sorger, Volker J. .
OPTICA, 2020, 7 (12) :1812-1819
[27]   Fourier optical preprocessing in lieu of deep learning [J].
Muminov, Baurzhan ;
Vuong, Luat T. .
OPTICA, 2020, 7 (09) :1079-1088
[28]   Experimentally realized in situ backpropagation for deep learning in photonic neural networks [J].
Pai, Sunil ;
Sun, Zhanghao ;
Hughes, Tyler W. ;
Park, Taewon ;
Bartlett, Ben ;
Williamson, Ian A. D. ;
Minkov, Momchil ;
Milanizadeh, Maziyar ;
Abebe, Nathnael ;
Morichetti, Francesco ;
Melloni, Andrea ;
Fan, Shanhui ;
Solgaard, Olav ;
Miller, David A. B. .
SCIENCE, 2023, 380 (6643) :398-403
[29]   Dynamic recognition and mirage using neuro-metamaterials [J].
Qian, Chao ;
Wang, Zhedong ;
Qian, Haoliang ;
Cai, Tong ;
Zheng, Bin ;
Lin, Xiao ;
Shen, Yichen ;
Kaminer, Ido ;
Li, Erping ;
Chen, Hongsheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[30]   Universal linear intensity transformations using spatially incoherent diffractive processors [J].
Rahman, Md Sadman Sakib ;
Yang, Xilin ;
Li, Jingxi ;
Bai, Bijie ;
Ozcan, Aydogan .
LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)