Role of spatial coherence in diffractive optical neural networks

被引:5
作者
Filipovich, M. atthew j. [1 ]
Malyshev, A. leksei [1 ]
Lvovsky, A. I. [1 ,2 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford, England
[2] Wood Ctr Innovat, Lumai, Quarry Rd,Headington, Oxford, England
基金
“创新英国”项目; 欧盟地平线“2020”;
关键词
ARTIFICIAL-INTELLIGENCE; BACKPROPAGATION;
D O I
10.1364/OE.523619
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Diffractive optical neural networks (DONNs) have emerged as a promising optical hardware platform for ultra -fast and energy -efficient signal processing for machine learning tasks, particularly in computer vision. Previous experimental demonstrations of DONNs have only been performed using coherent light. However, many real -world DONN applications require consideration of the spatial coherence properties of the optical signals. Here, we study the role of spatial coherence in DONN operation and performance. We propose a numerical approach to efficiently simulate DONNs under incoherent and partially coherent input illumination and discuss the corresponding computational complexity. As a demonstration, we train and evaluate simulated DONNs on the MNIST dataset of handwritten digits to process light with varying spatial coherence.
引用
收藏
页码:22986 / 22997
页数:12
相关论文
共 49 条
[1]  
Amodei D., 2018, AI AND COMPUTE
[2]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[3]  
Attal B., 2022, IEEE T PATTERN ANAL, P1
[4]  
Bochkovskiy A, 2020, PREPRINT, DOI 10.48550/ARXIV.2004.10934
[5]  
Brown TB, 2020, ADV NEUR IN, V33
[6]   Zero-power optical convolutional neural network using incoherent light [J].
Fei, Yuhang ;
Sui, Xiubao ;
Gu, Guohua ;
Chen, Qian .
OPTICS AND LASERS IN ENGINEERING, 2023, 162
[7]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[8]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+
[9]   Silicon photonic architecture for training deep neural networks with direct feedback alignment [J].
Filipovich, Atthew J. ;
Guo, Zhimu ;
Al-Qadasi, Mohammed ;
Arquez, Bicky A. M. ;
Morison, Hugh D. ;
Sorger, Volker J. ;
Prucnal, Paul R. ;
Shekhar, Sudip ;
Shastri, Bhavin J. .
OPTICA, 2022, 9 (12) :1323-1332
[10]   Fundamental Technologies in Modern Speech Recognition [J].
Furui, Sadaoki ;
Deng, Li ;
Gales, Mark ;
Ney, Hermann ;
Tokuda, Keiichi .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :16-17