Understanding the dynamics of hepatitis B transmission: A stochastic model with vaccination and Ornstein-Uhlenbeck process

被引:6
作者
Wu, Shuying [1 ]
Yuan, Sanling [1 ]
Lan, Guijie [1 ]
Zhang, Tonghua [2 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
[2] Swinburne Univ Technol, Dept Math, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Hepatitis B epidemic model; Ornstein-Uhlenbeck process; Density function; Stationary distribution; Extinction exponentially; SIR EPIDEMIC MODEL; ASYMPTOTIC PROPERTIES; VIRUS; EXTINCTION; INFECTION;
D O I
10.1016/j.amc.2024.128766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explore and analyze a stochastic epidemiological model with vaccination and two mean -reverting Ornstein-Uhlenbeck processes to describe the dynamics of HBV transmission. Our study begins by deriving a sufficient condition for the extinction of hepatitis B. Additionally, we determine the presence of a stationary distribution using the Markov process stability theory. Next, we utilize algebraic equation theory and the associated Fokker -Planck equation to derive an explicit expression for the unique probability density function. To validate our theoretical findings, we conduct several numerical simulations using hepatitis B data provided by the World Health Organization (WHO). The results of these simulations support and complement our analytical approach.
引用
收藏
页数:22
相关论文
共 39 条
[1]  
Akbari R, 2016, International journal of industrial mathematics., V8, P119
[2]  
Allen L.J.S., 2003, INTRO STOCHASTIC PRO
[3]  
Arya SC, 1999, HEPATOLOGY, V29, P610
[4]   Delayed hepatitis B epidemic model with stochastic analysis [J].
Din, Anwarud ;
Li, Yongjin ;
Yusuf, Abdullahi .
CHAOS SOLITONS & FRACTALS, 2021, 146
[5]  
Emerenini BO, 2018, F1000Research, V7, P1312, DOI [10.12688/f1000research.15557.1, 10.12688/f1000research.15557.1, DOI 10.12688/F1000RESEARCH.15557.1]
[6]   Long-term immunogenicity of hepatitis B vaccination in a cohort of Italian healthy adolescents [J].
Gabbuti, Andrea ;
Romano, Luisa ;
Blanc, Pierluigi ;
Meacci, Francesca ;
Amendola, Antonella ;
Mele, Alfonso ;
Mazzotta, Francesco ;
Zanetti, Alessandro R. .
VACCINE, 2007, 25 (16) :3129-3132
[7]  
Garidiner CW, 1996, Handbook of Stochastic Methods: For Physics
[8]   The stationary distribution of hepatitis B virus with stochastic perturbation [J].
Ji, Chunyan .
APPLIED MATHEMATICS LETTERS, 2020, 100
[9]   A stochastic model for the transmission dynamics of hepatitis B virus [J].
Khan, Tahir ;
Jung, I. I. Hyo ;
Zaman, Gul .
JOURNAL OF BIOLOGICAL DYNAMICS, 2019, 13 (01) :328-344
[10]   The extinction and persistence of the stochastic hepatitis B epidemic model [J].
Khan, Tahir ;
Khan, Amir ;
Zaman, Gul .
CHAOS SOLITONS & FRACTALS, 2018, 108 :123-128