Soil pH amendment alters the abundance, diversity, and composition of microbial communities in two contrasting agricultural soils

被引:22
作者
Xiong, Ruonan [1 ]
He, Xinhua [2 ,3 ]
Gao, Nan [4 ]
Li, Qing [1 ]
Qiu, Zijian [1 ]
Hou, Yixin [1 ]
Shen, Weishou [1 ,5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing, Peoples R China
[2] Univ Western Australia, Sch Biol Sci, Perth, WA, Australia
[3] Univ Calif Davis, Dept Land & Air & Water Resources, Davis, CA USA
[4] Nanjing Tech Univ, Coll Biotechnol & Pharmaceut Engn, Natl Engn Res Ctr Biotechnol, Nanjing, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Inst Soil Hlth & Climate Smart Agr, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
soil pH; agricultural soil; bacterial community; fungal community; diversity; composition; MULTIPLE SEQUENCE ALIGNMENT; BACTERIAL COMMUNITY; FUNGAL COMMUNITIES; N2O EMISSIONS; NITROGEN; ACIDIFICATION; SALINIZATION; PREDICTOR; GRADIENT; GROWTH;
D O I
10.1128/spectrum.04165-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Soil microorganisms are the most active participants in terrestrial ecosystems, and have key roles in biogeochemical cycles and ecosystem functions. Despite the extensive research on soil pH as a key predictor of microbial community and composition, a limitation of these studies lies in determining whether bacterial and/or fungal communities are directly or indirectly influenced by pH. We conducted a controlled laboratory experiment to investigate the effects of soil pH amendment (+/- 1-2 units) with six levels on soil microbial communities in two contrasting Chinese agricultural soils (pH 8.43 in Dezhou, located in the North China Plain, Shandong vs pH 6.17 in Wuxi, located in the Taihu Lake region, Jiangsu, east China). Results showed that the fungal diversity and composition were related to soil pH, but the effects were much lower than the effects of soil pH on bacterial community in two soils. The diversity and composition of bacterial communities were more closely associated with soil pH in Wuxi soils compared to Dezhou soils. The alpha diversity of bacterial communities peaked near in situ pH levels in both soils, displaying a quadratic fitting pattern. Redundancy analysis and variation partition analysis indicated that soil pH affected bacterial community and composition by directly imposing a physiological constraint on soil bacteria and indirectly altering soil characteristics (e.g., nutrient availability). The study also examined complete curves of taxa relative abundances at the phylum and family levels in response to soil pH, with most relationships conforming to a quadratic fitting pattern, indicating soil pH is a reliable predictor. Furthermore, soil pH amendment affected the transformation of nitrogen and the abundances of functional genes involved in the nitrogen cycle, and methane production and consumption. Overall, results from this study would enhance our comprehension of how soil microorganisms in contrasting farmlands will respond to soil pH changes, and would contribute to more effective soil management and conservation strategies.IMPORTANCEThis study delves into the impact of soil pH on microbial communities, investigating whether pH directly or indirectly influences bacterial and fungal communities. The research involved two contrasting soils subjected to a 1-2 pH unit amendment. Results indicate bacterial community composition was shaped by soil pH through physiological constraints and nutrient limitations. We found that most taxa relative abundances at the phylum and family levels responded to pH with a quadratic fitting pattern, indicating that soil pH is a reliable predictor. Additionally, soil pH was found to significantly influence the predicted abundance of functional genes involved in the nitrogen cycle as well as in methane production and consumption processes. These insights can contribute to develop more effective soil management and conservation strategies. This study delves into the impact of soil pH on microbial communities, investigating whether pH directly or indirectly influences bacterial and fungal communities. The research involved two contrasting soils subjected to a 1-2 pH unit amendment. Results indicate bacterial community composition was shaped by soil pH through physiological constraints and nutrient limitations. We found that most taxa relative abundances at the phylum and family levels responded to pH with a quadratic fitting pattern, indicating that soil pH is a reliable predictor. Additionally, soil pH was found to significantly influence the predicted abundance of functional genes involved in the nitrogen cycle as well as in methane production and consumption processes. These insights can contribute to develop more effective soil management and conservation strategies.
引用
收藏
页数:19
相关论文
共 64 条
[1]   Adaptation of soil bacterial communities to prevailing pH in different soils [J].
Baath, E .
FEMS MICROBIOLOGY ECOLOGY, 1996, 19 (04) :227-237
[2]   Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies [J].
Baker, Kate L. ;
Langenheder, Silke ;
Nicol, Graeme W. ;
Ricketts, Dean ;
Killham, Kenneth ;
Campbell, Colin D. ;
Prosser, James I. .
SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (11) :2292-2298
[3]   Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin [J].
Bokulich, Nicholas A. ;
Kaehler, Benjamin D. ;
Rideout, Jai Ram ;
Dillon, Matthew ;
Bolyen, Evan ;
Knight, Rob ;
Huttley, Gavin A. ;
Caporaso, J. Gregory .
MICROBIOME, 2018, 6
[4]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[5]   REGULATION OF CYTOPLASMIC PH IN BACTERIA [J].
BOOTH, IR .
MICROBIOLOGICAL REVIEWS, 1985, 49 (04) :359-378
[6]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[7]   Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe [J].
Chen, Dima ;
Lan, Zhichun ;
Bai, Xue ;
Grace, James B. ;
Bai, Yongfei .
JOURNAL OF ECOLOGY, 2013, 101 (05) :1322-1334
[8]   Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes [J].
Chu, Haiyan ;
Fierer, Noah ;
Lauber, Christian L. ;
Caporaso, J. G. ;
Knight, Rob ;
Grogan, Paul .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (11) :2998-3006
[9]   Microbial diversity drives multifunctionality in terrestrial ecosystems [J].
Delgado-Baquerizo, Manuel ;
Maestre, Fernando T. ;
Reich, Peter B. ;
Jeffries, Thomas C. ;
Gaitan, Juan J. ;
Encinar, Daniel ;
Berdugo, Miguel ;
Campbell, Colin D. ;
Singh, Brajesh K. .
NATURE COMMUNICATIONS, 2016, 7
[10]   Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe [J].
Delgado-Baquerizo, Manuel ;
Eldridge, David J. ;
Ochoa, Victoria ;
Gozalo, Beatriz ;
Singh, Brajesh K. ;
Maestre, Fernando T. .
ECOLOGY LETTERS, 2017, 20 (10) :1295-1305