Codon usage bias analysis in the mitochondrial genomes of five Rhingia Scopoli (Diptera, Syrphidae, Eristalinae) species

被引:5
作者
Zhao, Rui [1 ]
Li, Hu [1 ]
Wu, Gang [1 ]
Wang, Yi-Fan [1 ]
机构
[1] Shaanxi Univ Technol, State Key Lab Biol Resources & Ecol Environm Qinli, Shaanxi Key Lab Bioresources, Sch Biol Sci & Engn,Qinling Bashan Mt Bioresources, Hanzhong, Shaanxi, Peoples R China
关键词
Rhingia; Mitogenome; Codon usage bias; Phylogeny; DNA-BASE COMPOSITION; PHYLOGENETIC-RELATIONSHIPS; SEQUENCE; EVOLUTION; SELECTION; MUTATION; MODELS;
D O I
10.1016/j.gene.2024.148466
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This study presents the sequencing and annotation of mitochondrial genomes from five Rhingia species of the family Syrphidae, focusing on codon bias. Each species possessed 22 tRNAs genes, 13 protein-coding genes, 2 rRNAs genes, and a control region, without any observed gene rearrangements. Nucleotide composition analysis revealed a higher AT content compared with GC content, indicating AT enrichment. Neutrality plot, Parity rule 2 bias, and effective number of codons plot analyses collectively indicated that natural selection primarily influences the codon usage bias in the five Rhingia species. Relative synonymous codon usage analysis identified the optimal codons for Rhingia binotata, R. fromosana, R. campestris, R. louguanensis, and R. xanthopoda as 10, 14, 10, 11, and 12, respectively, all ending with A/U and exhibiting AT preference. Phylogenetic analysis, based on maximum likelihood and Bayesian inference methods applied to three datasets, confirmed the monophyly of Rhingia. In conclusion, this research establishes a foundation for understanding the phylogenetic evolution and codon usage patterns in Rhingia, offering valuable for future studies.
引用
收藏
页数:11
相关论文
共 68 条
[1]  
Altmann R., 1894, Die Elementarorganismen und ihre Beziehungen zu den Zellen, P160
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]  
Ball S., 2015, Britain's Hoverflies: A Field Guide: A Field Guide, P322
[4]  
Ball S.G., 2000, Provisional atlas of British hoverflies (Diptera, Syrphidae), P167
[5]   Animal mitochondrial genomes [J].
Boore, JL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (08) :1767-1780
[6]   A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision [J].
Cameron, Stephen L. ;
Lambkin, Christine L. ;
Barker, Stephen C. ;
Whiting, Michael F. .
SYSTEMATIC ENTOMOLOGY, 2007, 32 (01) :40-59
[7]   Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny [J].
Cameron, Stephen L. .
ANNUAL REVIEW OF ENTOMOLOGY, VOL 59, 2014, 2014, 59 :95-117
[8]   trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J].
Capella-Gutierrez, Salvador ;
Silla-Martinez, Jose M. ;
Gabaldon, Toni .
BIOINFORMATICS, 2009, 25 (15) :1972-1973
[9]   Synonymous codon usage in adenoviruses: Influence of mutation, selection and protein hydropathy [J].
Das, Sabyasachi ;
Paul, Sandip ;
Dutta, Chitra .
VIRUS RESEARCH, 2006, 117 (02) :227-236
[10]   NOVOPlasty: de novo assembly of organelle genomes from whole genome data [J].
Dierckxsens, Nicolas ;
Mardulyn, Patrick ;
Smits, Guillaume .
NUCLEIC ACIDS RESEARCH, 2017, 45 (04)