A user-friendly deep learning application for accurate lung cancer diagnosis

被引:0
|
作者
Tai, Duong Thanh [1 ]
Nhu, Nguyen Tan [2 ,3 ]
Tuan, Pham Anh [4 ]
Sulieman, Abdelmoneim [5 ,6 ,7 ]
Omer, Hiba [8 ]
Alirezaei, Zahra [9 ]
Bradley, David [10 ,11 ]
Chow, James C. L. [12 ,13 ]
机构
[1] Nguyen Tat Thanh Univ, Dept Med Phys, Fac Med, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Int Univ VNU HCM, Sch Biomed Engn, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
[4] Bach Mai Hosp, Nucl Med & Oncol Ctr, Hanoi, Vietnam
[5] Prince Sattam Bin Abdulaziz Univ, Radiol & Med Imaging Dept, Coll Appl Med Sci, Al Kharj, Saudi Arabia
[6] Radiol Sci Dept, Coll Appl Med Sci, Al Hasa, Saudi Arabia
[7] King Saud bin Abdulaziz Univ Hlth Sci, Riyadh, Saudi Arabia
[8] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Deanship Preparatory Year & Supporting Studies, Dammam, Saudi Arabia
[9] Bushehr Univ Med Sci, Paramed Sch, Radiol Dept, Bushehr, Iran
[10] Sunway Univ, Appl Phys & Radiat Technol Grp, CCDCU, Subang Jaya, Malaysia
[11] Univ Surrey, Sch Math & Phys, Guildford, Surrey, England
[12] Univ Toronto, Dept Radiat Oncol, Toronto, ON, Canada
[13] Univ Hlth Network, Radiat Med Program, Princess Margaret Canc Ctr, Toronto, ON, Canada
关键词
Lung cancer; deep learning-based diagnosis; radiomics; computer-aided diagnosis; ARTIFICIAL-INTELLIGENCE; SEGMENTATION; RADIOMICS; NODULES;
D O I
10.3233/XST-230255
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
BACKGROUND: Accurate diagnosis and subsequent delineated treatment planning require the experience of clinicians in the handling of their case numbers. However, applying deep learning in image processing is useful in creating tools that promise faster high-quality diagnoses, but the accuracy and precision of 3-D image processing from 2-D data may be limited by factors such as superposition of organs, distortion and magnification, and detection of new pathologies. The purpose of this research is to use radiomics and deep learning to develop a tool for lung cancer diagnosis. METHODS: This study applies radiomics and deep learning in the diagnosis of lung cancer to help clinicians accurately analyze the images and thereby provide the appropriate treatment planning. 86 patients were recruited from Bach Mai Hospital, and 1012 patients were collected from an open-source database. First, deep learning has been applied in the process of segmentation by U-NET and cancer classification via the use of the DenseNet model. Second, the radiomics were applied for measuring and calculating diameter, surface area, and volume. Finally, the hardware also was designed by connecting between Arduino Nano and MFRC522 module for reading data from the tag. In addition, the displayed interface was created on a web platform using Python through Streamlit. RESULTS: The applied segmentation model yielded a validation loss of 0.498, a train loss of 0.27, a cancer classification validation loss of 0.78, and a training accuracy of 0.98. The outcomes of the diagnostic capabilities of lung cancer (recognition and classification of lung cancer from chest CT scans) were quite successful. CONCLUSIONS: The model provided means for storing and updating patients' data directly on the interface which allowed the results to be readily available for the health care providers. The developed system will improve clinical communication and information exchange. Moreover, it can manage efforts by generating correlated and coherent summaries of cancer diagnoses.
引用
收藏
页码:611 / 622
页数:12
相关论文
共 50 条
  • [1] Toward explainable deep learning in healthcare through transition matrix and user-friendly features
    Barmak, Oleksander
    Krak, Iurii
    Yakovlev, Sergiy
    Manziuk, Eduard
    Radiuk, Pavlo
    Kuznetsov, Vladislav
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [2] A User-friendly Approach for the Diagnosis of Diabetic Retinopathy Using ChatGPT and Automated Machine Learning
    Mohammadi, S. Saeed
    Nguyen, Quan Dong
    OPHTHALMOLOGY SCIENCE, 2024, 4 (04):
  • [3] Application of Deep Learning Methods in Diagnosis of Lung Nodules
    Cao Bin
    Yang Feng
    Ma Jingang
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [4] Application of radiomics in diagnosis and treatment of lung cancer
    Pan, Feng
    Feng, Li
    Liu, Baocai
    Hu, Yue
    Wang, Qian
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [5] A user-friendly machine learning approach for cardiac structures assessment
    Orhan, Atilla
    Akbayrak, Hakan
    Cicek, Omer Faruk
    Harmankaya, Ismail
    Vatansev, Husamettin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [6] Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
    Sun, Wenqing
    Zheng, Bin
    Qian, Wei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 530 - 539
  • [7] Deep Learning Algorithms for Diagnosis of Lung Cancer: A Systematic Review and Meta-Analysis
    Forte, Gabriele C.
    Altmayer, Stephan
    Silva, Ricardo F.
    Stefani, Mariana T.
    Libermann, Lucas L.
    Cavion, Cesar C.
    Youssef, Ali
    Forghani, Reza
    King, Jeremy
    Mohamed, Tan-Lucien
    Andrade, Rubens G. F.
    Hochhegger, Bruno
    CANCERS, 2022, 14 (16)
  • [8] Seadra a fully customizable and user-friendly application for image annotation and segmentation
    Morata, Jules
    Bernard, David
    Cortacero, Kevin
    Eloire, Clement
    Ech-Chouini, Mehdi
    Vigarios, Emmanuelle
    Ceccarel, Steven
    Comtesse-Maret, Delphine
    Filleron, Thomas
    Mouysset, Sandrine
    Cussat-Blanc, Sylvain
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 473 - 476
  • [9] Application of deep learning-based multimodal fusion technology in cancer diagnosis: A survey
    Li, Yan
    Pan, Liangrui
    Peng, Yijun
    Li, Xiaoyu
    Wang, Xiang
    Qu, Limeng
    Song, Qiya
    Liang, Qingchun
    Peng, Shaoliang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 143
  • [10] Improved diagnosis of lung cancer classification based on deep learning method
    Feroui, Amel
    Saim, Meriem
    Lazouni, Mohammed El Amine
    Lazzouni, Sihem Amel
    Elaouaber, Zineb Aziza
    Messadi, Mahammed
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 46 (02) : 138 - 159