Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo

被引:0
作者
Hachem, Hassan [1 ]
Abboud, Candy [2 ]
机构
[1] AgroParisTech, INRAE, UR1204, 147 Rue Univ, F-75338 Paris, France
[2] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
关键词
simultaneous quantile regression; Bayesian approach; Hamiltonian Monte Carlo; estimation; asymmetric Laplace distribution;
D O I
10.3390/a17060224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The simultaneous estimation of multiple quantiles is a crucial statistical task that enables a thorough understanding of data distribution for robust analysis and decision-making. In this study, we adopt a Bayesian approach to tackle this critical task, employing the asymmetric Laplace distribution (ALD) as a flexible framework for quantile modeling. Our methodology implementation involves the Hamiltonian Monte Carlo (HMC) algorithm, building on the foundation laid in prior work, where the error term is assumed to follow an ALD. Capitalizing on the interplay between two distinct quantiles of this distribution, we endorse a straightforward and fully Bayesian method that adheres to the non-crossing property of quantiles. Illustrated through simulated scenarios, we showcase the effectiveness of our approach in quantile estimation, enhancing precision via the HMC algorithm. The proposed method proves versatile, finding application in finance, environmental science, healthcare, and manufacturing, and contributing to sustainable development goals by fostering innovation and enhancing decision-making in diverse fields.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A Hamiltonian Monte-Carlo method for Bayesian inference of supermassive black hole binaries
    Porter, Edward K.
    Carre, Jerome
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (14)
  • [32] On the geometric ergodicity of Hamiltonian Monte Carlo
    Livingstone, Samuel
    Betancourt, Michael
    Byrne, Simon
    Girolami, Mark
    BERNOULLI, 2019, 25 (4A) : 3109 - 3138
  • [33] The geometric foundations of Hamiltonian Monte Carlo
    Betancourt, Michael
    Byrne, Simon
    Livingstone, Sam
    Girolami, Mark
    BERNOULLI, 2017, 23 (4A) : 2257 - 2298
  • [34] On Lq convergence of the Hamiltonian Monte Carlo
    Ghosh, Soumyadip
    Lu, Yingdong
    Nowicki, Tomasz
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 161 - 169
  • [35] Learning Hamiltonian Monte Carlo in R
    Thomas, Samuel
    Tu, Wanzhu
    AMERICAN STATISTICIAN, 2021, 75 (04) : 403 - 413
  • [36] Shadow Magnetic Hamiltonian Monte Carlo
    Mongwe, Wilson Tsakane
    Mbuvha, Rendani
    Marwala, Tshilidzi
    IEEE ACCESS, 2022, 10 : 34340 - 34351
  • [37] Stochastic approximation Hamiltonian Monte Carlo
    Yun, Jonghyun
    Shin, Minsuk
    Hoon Jin, Ick
    Liang, Faming
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3135 - 3156
  • [38] COUPLING AND CONVERGENCE FOR HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Eberle, Andreas
    Zimmer, Raphael
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (03) : 1209 - 1250
  • [39] Unbiasing Hamiltonian Monte Carlo Algorithms for a General Hamiltonian Function
    Lelievre, T.
    Santet, R.
    Stoltz, G.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [40] NONLINEAR REGRESSION USING SMOOTH BAYESIAN ESTIMATION
    Halimi, Abderrahim
    Mailhes, Corinne
    Tourneret, Jean-Yves
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2634 - 2638