Explainable AI Frameworks: Navigating the Present Challenges and Unveiling Innovative Applications

被引:8
作者
Sharma, Neeraj Anand [1 ]
Chand, Rishal Ravikesh [1 ]
Buksh, Zain [1 ]
Ali, A. B. M. Shawkat [1 ]
Hanif, Ambreen [2 ]
Beheshti, Amin [2 ]
机构
[1] Univ Fiji, Dept Comp Sci & Math, POB 42458, Lautoka, Fiji
[2] Macquarie Univ, Sch Comp, Balaclava Rd, Macquarie Pk, NSW 2109, Australia
关键词
artificial intelligence; black box; explainable AI; framework; techniques; XAI; ARTIFICIAL-INTELLIGENCE; EXPLANATIONS;
D O I
10.3390/a17060227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study delves into the realm of Explainable Artificial Intelligence (XAI) frameworks, aiming to empower researchers and practitioners with a deeper understanding of these tools. We establish a comprehensive knowledge base by classifying and analyzing prominent XAI solutions based on key attributes like explanation type, model dependence, and use cases. This resource equips users to navigate the diverse XAI landscape and select the most suitable framework for their specific needs. Furthermore, the study proposes a novel framework called XAIE (eXplainable AI Evaluator) for informed decision-making in XAI adoption. This framework empowers users to assess different XAI options based on their application context objectively. This will lead to more responsible AI development by fostering transparency and trust. Finally, the research identifies the limitations and challenges associated with the existing XAI frameworks, paving the way for future advancements. By highlighting these areas, the study guides researchers and developers in enhancing the capabilities of Explainable AI.
引用
收藏
页数:42
相关论文
共 103 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[3]  
Agarwal N, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P1528, DOI [10.1109/ssci47803.2020.9308260, 10.1109/SSCI47803.2020.9308260]
[4]  
Alber M, 2019, J MACH LEARN RES, V20
[5]   ROULETTE: A neural attention multi-output model for explainable Network Intrusion Detection [J].
Andresini, Giuseppina ;
Appice, Annalisa ;
Caforio, Francesco Paolo ;
Malerba, Donato ;
Vessio, Gennaro .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 201
[6]  
[Anonymous], Alteryx The Essential Guide to Explainable AI (XAI)
[7]   Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review [J].
Antoniadi, Anna Markella ;
Du, Yuhan ;
Guendouz, Yasmine ;
Wei, Lan ;
Mazo, Claudia ;
Becker, Brett A. ;
Mooney, Catherine .
APPLIED SCIENCES-BASEL, 2021, 11 (11)
[8]  
Arya V, 2019, Arxiv, DOI arXiv:1909.03012
[9]  
Arya V, 2020, J MACH LEARN RES, V21
[10]   Graph Neural Network: A Comprehensive Review on Non-Euclidean Space [J].
Asif, Nurul A. ;
Sarker, Yeahia ;
Chakrabortty, Ripon K. ;
Ryan, Michael J. ;
Ahamed, Md. Hafiz ;
Saha, Dip K. ;
Badal, Faisal R. ;
Das, Sajal K. ;
Ali, Md. Firoz ;
Moyeen, Sumaya I. ;
Islam, Md. Robiul ;
Tasneem, Zinat .
IEEE ACCESS, 2021, 9 :60588-60606