On D-distance (anti)magic labelings of shadow graph of some graphs

被引:0
作者
Ngurah, Anak Agung Gede [1 ]
Inayah, Nur [2 ]
Musti, Mohamad I. S. [2 ]
机构
[1] Univ Merdeka Malang, Dept Civil Engn, Jalan Terusan Raya Dieng 62-64, Malang, Indonesia
[2] State Islamic Univ Syarif Hidayatullah, Fac Sci & Technol, Dept Math, Jl Ir H Juanda 95, Tangerang Selatan 15412, Indonesia
关键词
D-distance (anti)magic labeling; D-distance (anti)magic graph; shadow graph;
D O I
10.5614/ejgta.2024.12.1.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with vertex set V(G) and diameter diam(G). Let D subset of {0, 1, 2, 3, ... , diam(G)} if > and phi : V (G) -> {1, 2, 3, ...,|V(G)|}be a bijection. The graph G is called D -distance magic, if Sigma(s is an element of ND(t)) phi(s) is a constant for any vertex t is an element of V(G). The graph G is called (alpha, beta)-D-distance antimagic, if {Sigma( s is an element of ND(t)) phi(s) : t is an element of V(G)} is a set {alpha, alpha + beta, alpha + 2 beta, ... , alpha + (|V(G)| - 1)beta}. In this paper, we study D -distance (anti)magic labelings of shadow graphs for D = {1}, {0, 1}, {2}, and {0, 2}.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 17 条
[1]  
Arumugam S, 2012, AUSTRALAS J COMB, V54, P279
[2]   On Σ and Σ′ labelled graphs [J].
Beena, S. .
DISCRETE MATHEMATICS, 2009, 309 (06) :1783-1787
[3]  
Freyberg B, 2017, ELECTRON J GRAPH THE, V5, P304, DOI 10.5614/ejgta.2017.5.2.11
[4]   Regular handicap graphs of order n equivalent to 0 (mod 8) [J].
Froncek, Dalibor ;
Shepanik, Aaron .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) :208-218
[5]  
Froncek D, 2013, AKCE INT J GRAPHS CO, V10, P119
[6]  
Gallian JA, 2014, ELECTRON J COMB
[7]  
Kamatchi N., 2016, ICTCSDM 2016 1 INT C
[8]  
Kamatchi N., 2013, JCMCC, V64, P61
[9]  
Krisna C., 2021, ICMTA 2021 2 INT C M
[10]  
Miller Mirka, 2003, Australasian Journal of Combinatorics, V28, P305