Robust State-Feedback Control and Convergence Analysis for Uncertain LPV Systems Using State and Parameter Estimation

被引:0
作者
da Silva, Esdras Battosti [1 ]
de Souza, Ruhan Pontes Policarpo [2 ]
Agulhari, Cristiano Marcos [2 ]
Bressan, Glaucia Maria [3 ]
de Souza, Wesley Angelino [2 ]
机构
[1] Univ Tecnol Fed Parana UTFPR, Acad Dept Elect Engn, BR-86300000 Cornelio Procopio, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Grad Program Elect Engn, BR-86300000 Cornelio Procopio, Brazil
[3] Univ Tecnol Fed Parana UTFPR, Grad Program Bioinformat, BR-86300000 Cornelio Procopio, Brazil
关键词
LPV systems; parametric estimation; state-feedback control; linear matrix inequalities; robust filtering; estimation uncertainty; GAIN-SCHEDULING CONTROL; OUTPUT-FEEDBACK; LMI RELAXATIONS; OBSERVER; DESIGN;
D O I
10.3390/math12131941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study introduces the design of a state-feedback controller for Linear Parameter Varying (LPV) systems in scenarios where exogenous parameters are not directly accessible, and the state vector is to be estimated. Instead of considering a static feedback gain, it proposes a method for estimating these parameters and synthesizing a parameter-dependent state-feedback gain that is robust against uncertainties in parameter estimation. The state vector used by the state-feedback controller, and some quantities required by the estimation law, are both obtained by a robust filter synthesized by LMI (Linear Matrix Inequalities). This paper outlines the estimation, filtering, and control laws, detailing the conditions necessary for ensuring convergence and stability. A numerical experiment and a 2 DoF torsional system application show the enhanced dynamic performance of the method when applied to uncertain dynamic systems. The findings highlight the effectiveness of the proposed approach in maintaining system stability and improving performance despite the inherent uncertainties in parameter estimation, offering a significant contribution to the field of robust control for LPV systems.
引用
收藏
页数:24
相关论文
共 41 条
  • [1] Robust real-time parameter estimation for linear systems affected by external noises and uncertainties
    Agulhari, Cristiano M.
    Neto, Jose M. M.
    Lacerda, Marcio J.
    de Souza, Ruhan P. P.
    Castoldi, Marcelo F.
    Goedtel, Alessandro
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (02) : 203 - 220
  • [2] Algorithm 998: The Robust LMI Parser-A Toolbox to Construct LMI Conditions for Uncertain Systems
    Agulhari, Cristiano M.
    Felipe, Alexandre
    Oliveira, Ricardo C. L. F.
    Peres, Pedro L. D.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (03):
  • [3] Agulhari CM, 2013, P AMER CONTR CONF, P6060
  • [4] LMI Relaxations for Reduced-Order Robust H∞ Control of Continuous-Time Uncertain Linear Systems
    Agulhari, Cristiano M.
    Oliveira, Ricardo C. L. F.
    Peres, Pedro L. D.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) : 1532 - 1537
  • [5] Andersen Erling D., 2000, High Performance Optimization, P197, DOI [10.1007/978-1-4757-3216-0, DOI 10.1007/978-1-4757-3216-0, DOI 10.1007/978-1-4757-3216-0_8]
  • [6] Astrom K.J., 2008, Adaptive Control
  • [7] Boyd S., 1994, SIAM
  • [8] Least-squares model-reference adaptive control with high-order parameter tuners
    Costa, Ramon R.
    [J]. AUTOMATICA, 2024, 163
  • [9] Adaptive gain-scheduling control for continuous-time systems with polytopic uncertainties: An LMI-based approach
    da Silva Campos, Victor Costa
    Anh-Tu Nguyen
    Palhares, Reinaldo Martinez
    [J]. AUTOMATICA, 2021, 133
  • [10] Improved LMI Conditions for Unknown Input Observer Design of Discrete-time LPV Systems
    de Oliveira, Matheus Senna
    Pereira, Renan Lima
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (10) : 2543 - 2551