Extended Framework and Evaluation for Multivariate Streaming Anomaly Detection with Machine Learning

被引:0
作者
Koch, Andreas [1 ,2 ]
Petry, Michael [1 ,2 ]
Werner, Martin [2 ]
机构
[1] Airbus Def & Space GmbH, Telecom & Nav Proc Germany, Wunstorf, Germany
[2] Tech Univ Munich, Sch Engn & Design, Professorship Big Geospatial Data Management, Munich, Germany
来源
2024 IEEE 40TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, ICDEW | 2024年
关键词
Machine learning; anomaly detection; stream mining; online learning; multivariate time series;
D O I
10.1109/ICDEW61823.2024.00025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Streaming anomaly detection in multivariate time series is an important problem relevant for automatic monitoring of various devices. This paper tackles the problem of streaming anomaly detection by extending a framework for the purpose of incorporating model-based approaches and evaluating previously uncombined methods for a total number of 26 distinct machine-learning-based algorithms. The framework identifies four fundamental components inherent to many streaming anomaly detection algorithms and one or more methods are presented for each component. It is found that a simple and computationally less expensive strategy for detecting concept drift yields almost identical results to the "KSWIN" strategy, when applied to measuring concept drift in a training set relevant for training a machine learning model. A secondary experiment supports the effectiveness of finetuning a machine learning model after the detection of concept drift for the purpose of detecting anomalies.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 29 条
[1]  
Ahmad S, 2016, Arxiv, DOI arXiv:1607.02480
[2]   USAD : UnSupervised Anomaly Detection on Multivariate Time Series [J].
Audibert, Julien ;
Michiardi, Pietro ;
Guyard, Frederic ;
Marti, Sebastien ;
Zuluaga, Maria A. .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3395-3404
[3]   Wearable Assistant for Parkinson's Disease Patients With the Freezing of Gait Symptom [J].
Baechlin, Marc ;
Plotnik, Meir ;
Roggen, Daniel ;
Maidan, Inbal ;
Hausdorff, Jeffrey M. ;
Giladi, Nir ;
Troester, Gerhard .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (02) :436-446
[4]   Autonomous anomaly detection for streaming data [J].
Basheer, Muhammad Yunus Iqbal ;
Ali, Azliza Mohd ;
Hamid, Nurzeatul Hamimah Abdul ;
Ariffin, Muhammad Azizi Mohd ;
Osman, Rozianawaty ;
Nordin, Sharifalillah ;
Gu, Xiaowei .
KNOWLEDGE-BASED SYSTEMS, 2024, 284
[5]  
Belacel Nabil, 2022, 2022 IEEE INT C BIG, P3348
[6]   SAND: Streaming Subsequence Anomaly Detection [J].
Boniol, Paul ;
Paparrizos, John ;
Palpanas, Themis ;
Franklin, Michael J. .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (10) :1717-1729
[7]   No free lunch but a cheaper supper: A general framework for streaming anomaly detection [J].
Calikus, Ece ;
Nowaczyk, Slawomir ;
Sant'Anna, Anita ;
Dikmen, Onur .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 155
[8]   Extended Isolation Forest [J].
Hariri, Sahand ;
Kind, Matias Carrasco ;
Brunner, Robert J. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (04) :1479-1489
[9]   DeepStream: Autoencoder-based stream temporal clustering and anomaly detection [J].
Harush, Shimon ;
Meidan, Yair ;
Shabtai, Asaf .
COMPUTERS & SECURITY, 2021, 106
[10]   On the Improvement of the Isolation Forest Algorithm for Outlier Detection with Streaming Data [J].
Heigl, Michael ;
Anand, Kumar Ashutosh ;
Urmann, Andreas ;
Fiala, Dalibor ;
Schramm, Martin ;
Hable, Robert .
ELECTRONICS, 2021, 10 (13)