Dynamics of multidimensional fundamental and vortex solitons in random media

被引:1
作者
Lashkin, Volodymyr M. [1 ,2 ]
机构
[1] Inst Nucl Res, Pr Nauki 47, UA-03028 Kiev, Ukraine
[2] Space Res Inst, Pr Glushkova 40 K 4-1, UA-03187 Kiev, Ukraine
关键词
NONLINEAR SCHRODINGER-EQUATION; PROPAGATION; PLASMA; DISPERSION; SCATTERING; TURBULENCE; COLLAPSE; WAVES; DECAY;
D O I
10.1103/PhysRevE.109.064216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the dynamics of fundamental and vortex solitons in the framework of the nonlinear Schr & ouml;dinger equation with the spatial dimension D ? 2 with a multiplicative random term depending on the time and space coordinates. To this end, we develop a new technique for calculating the even moments of the N th order. The proposed formalism does not use closure procedures for the nonlinear term, as well as the smallness of the random term and the use of perturbation theory. The essential point is the quadratic form of the autocorrelation function of the random field and the special stochastic change of variables. Using variational analysis to determine the field of structures in the deterministic case, we analytically calculate a number of statistical characteristics describing the dynamics of fundamental and vortex solitons in random medium, such as the mean intensities, the variance of the intensity, the centroid, and spread of the structures, the spatial mutual coherence function, etc. In particular, we show that, under the irreversible action of fluctuations, the solitons spread out, i.e., no collapse occurs.
引用
收藏
页数:12
相关论文
共 73 条
  • [1] Optical solitons in random media
    Abdullaev, Fatkhulla
    Garnier, Josselin
    [J]. PROGRESS IN OPTICS, VOL 48, 2005, 48 : 35 - 106
  • [2] Optical pulse propagation in fibers with random dispersion
    Abdullaev, FK
    Navotny, DV
    Baizakov, BB
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 192 (1-2) : 83 - 94
  • [3] SOLITON COLLECTIVE EXCITATIONS IN STOCHASTIC MOLECULAR-CRYSTALS
    ABDULLAEV, FK
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1982, 51 (03) : 607 - 610
  • [4] Ground states and vortices of matter-wave condensates and optical guided waves -: art. no. 026611
    Alexander, TJ
    Bergé, L
    [J]. PHYSICAL REVIEW E, 2002, 65 (02)
  • [5] [Anonymous], 1974, Sov. Phys. JETP
  • [6] PROPAGATION OF NONLINEAR INCOHERENT PULSES IN SINGLE-MODE OPTICAL FIBERS
    BASS, FG
    KIVSHAR, YS
    KONOTOP, VV
    PUZENKO, SA
    [J]. OPTICS COMMUNICATIONS, 1988, 68 (05) : 385 - 390
  • [7] DYNAMICS OF SOLITONS UNDER RANDOM PERTURBATIONS
    BASS, FG
    KIVSHAR, YS
    KONOTOP, VV
    SINITSYN, YA
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 157 (02): : 63 - 181
  • [8] Wave collapse in physics: principles and applications to light and plasma waves
    Berge, L
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6): : 259 - 370
  • [9] Besieris I. M., 1980, Nonlinear Electromagnetics, P87
  • [10] Theory of randomly inhomogeneous waveguides with slight material dispersion: I. Single-mode waveguides
    Bezak, V
    [J]. WAVES IN RANDOM MEDIA, 1998, 8 (03): : 351 - 367