Development of machine learning-based malignant pericardial effusion-related model in breast cancer: Implications for clinical significance, tumor immune and drug-therapy

被引:1
作者
Zhan, Wendi [1 ,2 ]
Hu, Haihong [1 ,2 ]
Hao, Bo [2 ]
Zhu, Hongxia [1 ,2 ]
Yan, Ting [4 ]
Zhang, Jingdi [1 ,2 ]
Wang, Siyu [5 ]
Liu, Saiyang [6 ]
Zhang, Taolan [2 ,3 ,7 ]
机构
[1] Univ South China, Hengyang Med Coll, Sch Pharm, 28 Western Changsheng Rd, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Hengyang Med Sch, Dept Pharm, Affiliated Hosp 1, Hengyang 421001, Hunan, Peoples R China
[3] Univ South China, Affiliated Hosp 1, Clin Trial Ctr Phase 1, Hengyang Med Sch, Hengyang 421001, Hunan, Peoples R China
[4] Univ South China, Hengyang Med Sch, Affiliated Hosp 1, Dept Breast & Thyroid Surg, Hengyang 421001, Hunan, Peoples R China
[5] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Med Oncol, Hengyang 421001, Hunan, Peoples R China
[6] Shandong Univ Tradit Chinese Med, Jinan 250355, Shandong, Peoples R China
[7] Hengyang Med Sch, Affiliated Hosp 1, Dept Pharm, 69 Chuanshan Rd, Hengyang 421000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; Malignant pericardial effusion; Subtypes; Immune infiltration; Prognostic model; Web-based tool; PROGNOSTIC-FACTORS; EXPRESSION; IDENTIFICATION; INHIBITORS; SURVIVAL; OUTCOMES; CELLS; STAGE;
D O I
10.1016/j.heliyon.2024.e27507
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Malignant pericardial effusion (MPE) is a common complication of advanced breast cancer (BRCA) and plays an important role in BRCA. This study is aims to construct a prognostic model based on MPE-related genes for predicting the prognosis of breast cancer. Methods: The BRCA samples are analyzed based on the expression of MPE-related genes by using an unsupervised cluster analysis method. This study processes the data by least absolute shrinkage and selection operator and multivariate Cox analysis, and uses machine learning algorithms to construct BRCA prognostic model and develop web tool. Results: BRCA patients are classified into three clusters and a BRCA prognostic model is constructed containing 9 MPE-related genes. There are significant differences in signature pathways, immune infiltration, immunotherapy response and drug sensitivity testing between the high and low-risk groups. Of note, a web-based tool (http://wys.helyly.top/cox.html) is developed to predict overall survival as well as drug-therapy response of BRCA patients quickly and conveniently, which can provide a basis for clinicians to formulate individualized treatment plans. Conclusion: The MPE-related prognostic model developed in this study can be used as an effective tool for predicting the prognosis of BRCA and provides new insights for the diagnosis and treatment of BRCA patients.
引用
收藏
页数:16
相关论文
共 71 条
[1]   Etiology of Pericardial Effusion and Outcomes Post Pericardiocentesis in the Western Region of Saudi Arabia: A Single- center Experience [J].
Albugami, Saad ;
Al-Husayni, Faisal ;
Almalki, Abdullah ;
Dumyati, Mohammed ;
Zakri, Ysear ;
AlRahimi, Jamilah .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (01)
[2]   Potential targeting of FLT3 acute myeloid leukemia [J].
Ambinder, Alexander J. ;
Levis, Mark .
HAEMATOLOGICA, 2021, 106 (03) :671-681
[3]   Pericardial mesothelioma presenting as a suspected ST-elevation myocardial infarction [J].
Barroso, Ana Sofia ;
Leite, Sergio ;
Frioes, Fernando ;
Vasconcelos, Mariana ;
Azevedo, Daniela ;
Baldaia, Helena ;
Amorime, Mario Jorge ;
Dias, Paula .
REVISTA PORTUGUESA DE CARDIOLOGIA, 2017, 36 (04)
[4]   Update on the diagnosis and management of malignant pleural effusions [J].
Bashour, Sami, I ;
Mankidy, Babith J. ;
Lazarus, Donald R. .
RESPIRATORY MEDICINE, 2022, 196
[5]   ERS/EACTS statement on the management of malignant pleural effusions [J].
Bibby, Anna C. ;
Dorn, Patrick ;
Psallidas, Ioannis ;
Porcel, Jose M. ;
Janssen, Julius ;
Froudarakis, Marios ;
Subotic, Dragan ;
Astoul, Phillippe ;
Licht, Peter ;
Schmid, Ralph ;
Scherpereel, Arnaud ;
Rahman, Najib M. ;
Cardillo, Giuseppe ;
Maskell, Nick A. .
EUROPEAN RESPIRATORY JOURNAL, 2018, 52 (01)
[6]   Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer [J].
Cai, Wang-Yu ;
Dong, Zi-Nan ;
Fu, Xiao-Teng ;
Lin, Ling-Yun ;
Wang, Lin ;
Ye, Guo-Dong ;
Luo, Qi-Cong ;
Chen, Yu-Chao .
THERANOSTICS, 2020, 10 (19) :8633-8647
[7]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[8]   UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses [J].
Chandrashekar, Darshan S. ;
Bashel, Bhuwan ;
Balasubramanya, Sai Akshaya Hodigere ;
Creighton, Chad J. ;
Ponce-Rodriguez, Israel ;
Chakravarthi, Balabhadrapatruni V. S. K. ;
Varambally, Sooryanarayana .
NEOPLASIA, 2017, 19 (08) :649-658
[9]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[10]  
Chen BB, 2018, METHODS MOL BIOL, V1711, P243, DOI 10.1007/978-1-4939-7493-1_12