LANDER: Visual Analysis of Activity and Uncertainty in Surveillance Video

被引:0
作者
Li, Tong [1 ]
Sun, Guodao [1 ]
Chang, Baofeng [1 ]
Wang, Yunchao [1 ]
Jiang, Qi [1 ]
Ying, Yuanzhong [1 ]
Jiang, Li [1 ]
Liang, Ronghua [2 ]
Wang, Haixia [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310014, Peoples R China
[2] Zhejiang Univ Sci & Technol, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Visualization; Pedestrians; Data visualization; Task analysis; Trajectory; Security; Spatio-temporal activity; surveillance video; uncertainty; visual analysis; VISUALIZATION; DESIGN; SYSTEM; MODEL;
D O I
10.1109/THMS.2024.3409722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision algorithms face challenges of limited visual presentation and unreliability in pedestrian activity assessment. In this article, we introduce LANDER, an interactive analysis system for visual exploration of pedestrian activity and uncertainty in surveillance videos. This visual analytics system focuses on three common categories of uncertainties in object tracking and action recognition. LANDER offers an overview visualization of activity and uncertainty, along with spatio-temporal exploration views closely associated with the scene. Expert evaluation and user study indicate that LANDER outperforms traditional video exploration in data presentation and analysis workflow. Specifically, compared to the baseline method, it excels in reducing retrieval time ($p< $ 0.01), enhancing uncertainty identification ($p< $ 0.05), and improving the user experience ($p< $ 0.05).
引用
收藏
页码:427 / 440
页数:14
相关论文
共 56 条
  • [1] [Anonymous], 2014, ACM Transactions on Sensor Networks (TOSN), DOI DOI 10.1145/2530285
  • [2] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [3] Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
  • [4] BLASCH E, 2013, P SOC PHOTO-OPT INS, P1
  • [5] Blunsden S., 2010, Annals of the BMVA, V4, P4
  • [6] Borgo R., 2011, INPROC EUR ASS COMPU, P23
  • [7] Botchen R.P, 2006, P INT WORKSH VOL GRA, P47
  • [8] Action-based multifield video visualization
    Botchen, Ralf P.
    Bachthaler, Sven
    Schick, Fabian
    Chen, Min
    Mori, Greg
    Weiskopf, Daniel
    Ertl, Thomas
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (04) : 885 - 899
  • [9] Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
    Cao, Jinkun
    Pang, Jiangmiao
    Weng, Xinshuo
    Khirodkar, Rawal
    Kitani, Kris
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9686 - 9696
  • [10] Motion Browser: Visualizing and Understanding Complex Upper Limb Movement Under Obstetrical Brachial Plexus Injuries
    Chan, Gromit Yeuk-Yin
    Nonato, Luis Gustavo
    Chu, Alice
    Raghavan, Preeti
    Aluru, Viswanath
    Silva, Claudio T.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 981 - 990