Cubic∗ criticality emerging from a quantum loop model on triangular lattice

被引:0
|
作者
Ran, Xiaoxue [1 ,2 ]
Yan, Zheng [3 ,4 ,5 ]
Wang, Yan-Cheng [6 ]
Rong, Junchen [7 ]
Qi, Yang [8 ,9 ,10 ]
Meng, Zi Yang [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Peoples R China
[2] Univ Hong Kong, HKU UCAS Joint Inst Theoret & Computat Phys, Pokfulam Rd, Hong Kong, Peoples R China
[3] Westlake Univ, Sch Sci, Dept Phys, Hangzhou 310030, Peoples R China
[4] Westlake Univ, Res Ctr Ind Future, Hangzhou 310030, Peoples R China
[5] Westlake Inst Adv Study, Inst Nat Sci, Hangzhou 310024, Peoples R China
[6] Beihang Univ, Hangzhou Int Innovat Inst, Hangzhou 311115, Peoples R China
[7] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[8] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[9] Fudan Univ, Ctr Field Theory & Particle Phys, Dept Phys, Shanghai 200433, Peoples R China
[10] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevB.109.L241109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum loop and dimer models are archetypal examples of correlated systems with local constraints. Obtaining generic solutions for these models is difficult due to the lack of controlled methods to solve them in the thermodynamic limit. Nevertheless, these solutions are of immediate relevance to both statistical and quantum field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moir & eacute; materials, where the interplay between correlation and local constraints gives rise to a plethora of novel phenomena. In a recent work [X. Ran et al. , arXiv:2205.04472], it was found through sweeping cluster quantum Monte Carlo (QMC) simulations and field theory analysis that the triangular lattice quantum loop model (QLM) hosts a rich ground-state phase diagram with lattice nematic, vison plaquette (VP) crystals, and the Z 2 quantum spin liquid (QSL) close to the Rokhsar-Kivelson point. Here, we focus on the continuous quantum critical point separating the VP and QSL phases and demonstrate via both static and dynamic probes in QMC simulations that this transition is of the (2 + 1)D cubic* universality. In this transition, the fractionalized visons in QSL condense to give rise to the crystalline VP phase, while leaving their trace in the anomalously large anomalous dimension exponent and pronounced continua in the dimer and vison spectra compared with those at the conventional cubic or O(3) quantum critical points.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Triangular lattice quantum dimer model with variable dimer density
    Zheng Yan
    Rhine Samajdar
    Yan-Cheng Wang
    Subir Sachdev
    Zi Yang Meng
    Nature Communications, 13
  • [22] Triangular lattice quantum dimer model with variable dimer density
    Yan, Zheng
    Samajdar, Rhine
    Wang, Yan-Cheng
    Sachdev, Subir
    Meng, Zi Yang
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] Cubic interactions and quantum criticality in dimerized antiferromagnets
    Fritz, L.
    Doretto, R. L.
    Wessel, S.
    Wenzel, S.
    Burdin, S.
    Vojta, M.
    PHYSICAL REVIEW B, 2011, 83 (17)
  • [24] Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice
    Assaad, Fakher F.
    Herbut, Igor F.
    PHYSICAL REVIEW X, 2013, 3 (03):
  • [25] Striped supersolid phase and the search for deconfined quantum criticality in hard-core bosons on the triangular lattice
    Melko, R. G.
    Del Maestro, A.
    Burkov, A. A.
    PHYSICAL REVIEW B, 2006, 74 (21):
  • [26] Chiral spin liquid and quantum criticality in extended S=1/2 Heisenberg models on the triangular lattice
    Wietek, Alexander
    Laeuchli, Andreas M.
    PHYSICAL REVIEW B, 2017, 95 (03)
  • [27] Deconfined quantum criticality in the two-dimensional Kondo lattice model
    Kim, KS
    PHYSICAL REVIEW B, 2005, 72 (14)
  • [28] Criticality in quantum triangular antiferromagnets via fermionized vortices
    Alicea, J
    Motrunich, OI
    Hermele, M
    Fisher, MPA
    PHYSICAL REVIEW B, 2005, 72 (06):
  • [29] Field theory of quantum antiferromagnets: From the triangular to the kagome lattice
    Shubashree, D
    Shankar, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (7-8): : 781 - 802
  • [30] Zero-temperature properties of the quantum dimer model on the triangular lattice
    Ralko, A
    Ferrero, M
    Becca, F
    Ivanov, D
    Mila, F
    PHYSICAL REVIEW B, 2005, 71 (22):