Analysis of pile-soil-excavation interaction and load transfer mechanism in multi-layered soil for an in-service pile group

被引:2
作者
Bandyopadhyay, Paromeeta [1 ]
Teng, Fuchen [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Civil & Construct Engn, Taipei, Taiwan
关键词
Soil-pile interaction; Excavation; Negative skin friction; Multi-layered soil; Finite element analysis; FINITE-ELEMENT-ANALYSIS; DEEP EXCAVATION; ADJACENT; BEHAVIOR; DISPLACEMENT; SETTLEMENT; CAPACITY; SUBJECT; STATE; CLAY;
D O I
10.1016/j.compgeo.2024.106378
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A three-dimensional numerical analysis is conducted on a group pile adjacent to a deep multi-strutted excavation in a naturally occurring soil profile comprising both cohesive and non-cohesive layers. The contrasting soil layers affect the soil stiffness, strength, and deformation characteristics, thereby impacting the load transfer mechanism within a pile group. The primary aim of this study is to specifically understand how the presence of a noncohesive soil layer within a predominantly cohesive soil profile, affects the behavior of a pile group during excavation. By systematically varying the position and thickness of the soil layers, the analysis highlights the significance of considering the actual soil profile's inherent heterogeneity rather than assuming a homogeneous clay layer. 19.2% and 17% deviations respectively are observed for pile group settlement and lateral deflection when a homogeneous clay layer is considered instead of the natural soil profile. The findings also show that the position of the non-cohesive soil layer within a predominantly clay soil profile is more critical than its thickness in determining the pile response to excavation-induced changes. The non-cohesive soil layers within the excavation depth, significantly influence the lateral and axial pile behavior, while those below the final excavation depth have a limited impact. A theoretical simplified framework is proposed for the preliminary assessment of the excavation-induced effect on an adjacent pile group. This simplification helps minimize the initial calculation time and effort while capturing the significant factors affecting the pile group behavior near the excavation.
引用
收藏
页数:18
相关论文
共 42 条
[1]   Numerical Modelling of Passively Loaded Pile Groups [J].
Al-abboodi, Ihsan ;
Sabbagh, Tahsin Toma .
GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2019, 37 (04) :2747-2761
[2]  
Benz T., 2007, Small-Strain Stiffness of Soils and its Numerical Consequences, V5
[3]  
Bririkgreve RBJ, 2006, PROC MONOGR ENG WATE, P133
[4]  
Chen L.T., 1997, Soil and Foundations Japanese Geotechnical Society, V37, P1, DOI DOI 10.3208/SANDF.37.1
[5]   Underground excavation behaviour in Bangkok using three-dimensional finite element method [J].
Chheng, Chhunla ;
Likitlersuang, Suched .
COMPUTERS AND GEOTECHNICS, 2018, 95 :68-81
[6]  
Dos Santos JA, 2001, PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING VOLS 1-3, P267
[7]  
Engin H.K., 2009, PROCOF 17 INT C SOIL, P1189
[8]   ANALYSIS OF PERFORMANCE OF PILE GROUPS ADJACENT TO DEEP EXCAVATION [J].
FINNO, RJ ;
LAWRENCE, SA ;
ALLAWH, NF ;
HARAHAP, IS .
JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1991, 117 (06) :934-955
[9]   Pile response adjacent to braced excavation [J].
Goh, ATC ;
Wong, KS ;
Teh, CI ;
Wen, D .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2003, 129 (04) :383-386
[10]  
Gue SS., 2009, DFI J THE J DEEP FDN, V3, P49, DOI [10.1179/dfi.2009.011, DOI 10.1179/DFI.2009.011]