Variational denoising for variational quantum eigensolver

被引:0
|
作者
Tran, Quoc Hoan [1 ]
Kikuchi, Shinji [1 ]
Oshima, Hirotaka [1 ]
机构
[1] Fujitsu Ltd, Quantum Lab, Fujitsu Res, Kawasaki, Kanagawa 2118588, Japan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
SUPREMACY;
D O I
10.1103/PhysRevResearch.6.023181
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The variational quantum eigensolver (VQE) is a hybrid algorithm that has the potential to provide a quantum advantage in practical chemistry problems that are currently intractable on classical computers. VQE trains parameterized quantum circuits using a classical optimizer to approximate the eigenvalues and eigenstates of a given Hamiltonian. However, VQE faces challenges in task-specific design and machine-specific architecture, particularly when running on noisy quantum devices. This can have a negative impact on its trainability, accuracy, and efficiency, resulting in noisy quantum data. We propose variational denoising, an unsupervised learning method that employs a parameterized quantum neural network to improve the solution of VQE by learning from noisy VQE outputs. Our approach can significantly decrease energy estimation errors and increase fidelities with ground states compared to noisy input data for the H2, LiH, and BeH2 molecular Hamiltonians and the transverse field Ising model. Surprisingly, it only requires noisy data for training. Variational denoising can be integrated into quantum hardware, increasing its versatility as an end-to-end quantum processing for quantum data.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Clustering by Contour Coreset and Variational Quantum Eigensolver
    Yung, Canaan
    Usman, Muhammad
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (08)
  • [22] Accelerating the variational quantum eigensolver using parallelism
    Mineh, Lana
    Montanaro, Ashley
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (03)
  • [23] Extending the variational quantum eigensolver to finite temperatures
    Selisko, Johannes
    Amsler, Maximilian
    Hammerschmidt, Thomas
    Drautz, Ralf
    Eckl, Thomas
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
  • [24] Variational quantum eigensolver with reduced circuit complexity
    Yu Zhang
    Lukasz Cincio
    Christian F. A. Negre
    Piotr Czarnik
    Patrick J. Coles
    Petr M. Anisimov
    Susan M. Mniszewski
    Sergei Tretiak
    Pavel A. Dub
    npj Quantum Information, 8
  • [25] Symmetry enhanced variational quantum spin eigensolver
    Lyu, Chufan
    Xu, Xusheng
    Yung, Man -Hong
    Bayat, Abolfazl
    QUANTUM, 2023, 7 : 1 - 15
  • [26] VanQver: the variational and adiabatically navigated quantum eigensolver
    Matsuura, Shunji
    Yamazaki, Takeshi
    Senicourt, Valentin
    Huntington, Lee
    Zaribafiyan, Arman
    NEW JOURNAL OF PHYSICS, 2020, 22 (05)
  • [27] Variational quantum eigensolver with reduced circuit complexity
    Zhang, Yu
    Cincio, Lukasz
    Negre, Christian F. A.
    Czarnik, Piotr
    Coles, Patrick J.
    Anisimov, Petr M.
    Mniszewski, Susan M.
    Tretiak, Sergei
    Dub, Pavel A.
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [28] Error Analysis of the Variational Quantum Eigensolver Algorithm
    Brandhofer, Sebastian
    Devitt, Simon
    Polian, Ilia
    2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2021,
  • [29] Variational quantum eigensolver for SU(N) fermions
    Consiglio, Mirko
    Chetcuti, Wayne J.
    Bravo-Prieto, Carlos
    Ramos-Calderer, Sergi
    Minguzzi, Anna
    Latorre, Jose, I
    Amico, Luigi
    Apollaro, Tony J. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (26)
  • [30] Variational quantum eigensolver for dynamic correlation functions
    Chen, Hongxiang
    Nusspickel, Max
    Tilly, Jules
    Booth, George H.
    PHYSICAL REVIEW A, 2021, 104 (03)