A Trust-Region Method for Data-Driven Iterative Learning Control of Nonlinear Systems

被引:1
作者
Wang, Jia [1 ]
Hemelhof, Leander [1 ]
Markovsky, Ivan [2 ,3 ]
Patrinos, Panagiotis [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, B-3001 Leuven, Belgium
[2] Gran Capita, Int Ctr Numer Methods Engn, Barcelona 08034, Spain
[3] Catalan Inst Res & Adv Studies, Barcelona 08010, Spain
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Polynomials; Interpolation; Vectors; Jacobian matrices; Trajectory; Process control; Periodic structures; Data-driven control; iterative learning control; nonlinear system control; derivative-free optimization; DESIGN;
D O I
10.1109/LCSYS.2024.3417805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter employs a derivative-free trust-region method to solve the norm-optimal iterative learning control problem for nonlinear systems with unknown dynamics. The iteration process is composed by two kinds of trials: main and additional trials. The tracking error is reduced in each main trial, and the additional trials explore the nonlinear dynamics around the main trial input. Then the trust-region subproblem is constructed based on the additional trial data, and solved to generate the next main trial input. The convergence of the tracking error is proved under mild assumptions. Our method is illustrated in simulations https://github.com/JiaaaWang/TRILC.
引用
收藏
页码:1847 / 1852
页数:6
相关论文
共 19 条
[1]   Iterative learning control for discrete-time systems with exponential rate of convergence [J].
Amann, N ;
Owens, DH ;
Rogers, E .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (02) :217-224
[2]   Iterative learning control using optimal feedback and feedforward actions [J].
Amann, N ;
Owens, DH ;
Rogers, E .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 65 (02) :277-293
[3]   Global optimization via inverse distance weighting and radial basis functions [J].
Bemporad, Alberto .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (02) :571-595
[4]   A derivative-free Gauss-Newton method [J].
Cartis, Coralia ;
Roberts, Lindon .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (04) :631-674
[5]   A unified data-driven design framework of optimality-based generalized iterative learning control [J].
Chi, Ronghu ;
Hou, Zhongsheng ;
Huang, Biao ;
Jin, Shangtai .
COMPUTERS & CHEMICAL ENGINEERING, 2015, 77 :10-23
[6]  
Conn AR, 2009, MOS-SIAM SER OPTIMIZ, V8, P1
[7]   Upper Limb Electrical Stimulation Using Input-Output Linearization and Iterative Learning Control [J].
Freeman, Christopher T. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (04) :1546-1554
[8]   Micro-batch reactor for catching intermediates and monitoring kinetics of rapid and exothermic homogeneous reactions [J].
Kashid, Madhvanand ;
Detraz, Olivier ;
Moya, Mireia Santacana ;
Yuranov, Igor ;
Prechtl, Petra ;
Membrez, Jacques ;
Renken, Albert ;
Kiwi-Minsker, Lioubov .
CHEMICAL ENGINEERING JOURNAL, 2013, 214 :149-156
[9]   An Iterative Learning Algorithm for Control of an Accelerator Based Free Electron Laser [J].
Kichhoff, S. ;
Schmidt, C. ;
Lichtenberg, G. ;
Werner, H. .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :3032-3037
[10]  
Powell M. J., 2009, Cambridge NA Report NA2009/06, P26