LLMScenario: Large Language Model Driven Scenario Generation

被引:13
作者
Chang, Cheng [1 ]
Wang, Siqi [1 ]
Zhang, Jiawei [1 ]
Ge, Jingwei [1 ]
Li, Li [2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, BNRist, Beijing 100084, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2024年 / 54卷 / 11期
关键词
Scenario generation; Cognition; Autonomous vehicles; Tuning; Testing; Semantics; Task analysis; Large language model (LLM); scenario engineering; scenario generation;
D O I
10.1109/TSMC.2024.3392930
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Scenario engineering plays a vital role in various Industry 5.0 applications. In the field of autonomous driving systems, driving scenario data are important for the training and testing of critical modules. However, the corner scenario cases are usually rare and necessary to be extended. Existing methods cannot handle the interpretation and reasoning of the generation process well, which reduces the reliability and usability of the generated scenarios. With the rapid development of Foundation Models, especially the large language model (LLM), we can conduct scenario generation via more powerful tools. In this article, we propose LLMScenario, a novel LLM-driven scenario generation framework, which is composed of scenario prompt engineering, LLM scenario generation, and evaluation feedback tuning. The minimum scenario description specific to LLM is given by scenario analysis and ablation studies. We also appropriately design the score functions in terms of reality and rarity to evaluate the generated scenarios. The model performance is further enhanced through chain-of-thoughts and experiences. Different LLMs are also compared with our framework. Experimental results on naturalistic datasets demonstrate the effectiveness of LLMScenario, which can provide solid support for scenario engineering in Industry 5.0.
引用
收藏
页码:6581 / 6594
页数:14
相关论文
共 92 条
[11]   MetaScenario: A Framework for Driving Scenario Data Description, Storage and Indexing [J].
Chang, Cheng ;
Cao, Dongpu ;
Chen, Long ;
Su, Kui ;
Su, Kuifeng ;
Su, Yuelong ;
Wang, Fei-Yue ;
Wang, Jue ;
Wang, Ping ;
Wei, Junqing ;
Wu, Gansha ;
Wu, Xiangbin ;
Xu, Huile ;
Zheng, Nanning ;
Li, Li .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02) :1156-1175
[12]   Driving Safety Monitoring and Warning for Connected and Automated Vehicles via Edge Computing [J].
Chang, Cheng ;
Zhang, Kunpeng ;
Zhang, Jiawei ;
Li, Shen ;
Li, Li .
2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, :3940-3947
[13]   Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys [J].
Chen, Long ;
Li, Yuchen ;
Huang, Chao ;
Li, Bai ;
Xing, Yang ;
Tian, Daxin ;
Li, Li ;
Hu, Zhongxu ;
Na, Xiaoxiang ;
Li, Zixuan ;
Teng, Siyu ;
Lv, Chen ;
Wang, Jinjun ;
Cao, Dongpu ;
Zheng, Nanning ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02) :1046-1056
[14]  
Chen L, 2023, IEEE T SYST MAN CY-S, V53, P6401, DOI [10.1109/TSMC.2023.3283021, 10.1109/ICASSP49357.2023.10095036]
[15]   Milestones in Autonomous Driving and Intelligent Vehicles-Part 1: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors [J].
Chen, Long ;
Li, Yuchen ;
Huang, Chao ;
Xing, Yang ;
Tian, Daxin ;
Li, Li ;
Hu, Zhongxu ;
Teng, Siyu ;
Lv, Chen ;
Wang, Jinjun ;
Cao, Dongpu ;
Zheng, Nanning ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (09) :5831-5847
[16]  
Cox M. A., 2008, Handbook of Data Visualization, P315, DOI DOI 10.1007/978-3-540-33037-0_14
[17]   DriveLLM: Charting the Path Toward Full Autonomous Driving With Large Language Models [J].
Cui, Yaodong ;
Huang, Shucheng ;
Zhong, Jiaming ;
Liu, Zhenan ;
Wang, Yutong ;
Sun, Chen ;
Li, Bai ;
Wang, Xiao ;
Khajepour, Amir .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01) :1450-1464
[18]   Image-based traffic signal control via world models [J].
Dai, Xingyuan ;
Zhao, Chen ;
Wang, Xiao ;
Lv, Yisheng ;
Lin, Yilun ;
Wang, Fei-Yue .
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (12) :1795-1813
[19]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[20]  
Ding WH, 2020, IEEE INT CONF ROBOT, P4314, DOI [10.1109/icra40945.2020.9197145, 10.1109/ICRA40945.2020.9197145]