Electronic states in quantum wires on a Möbius strip

被引:0
|
作者
Pinto, J. J. L. R. [1 ]
Silva, J. E. G. [1 ]
Almeida, C. A. S. [1 ,2 ]
机构
[1] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, CE, Brazil
[2] Tufts Univ, Inst Cosmol, Dept Phys & Astron, Medford, MA 02155 USA
关键词
electronic states; curvature; M & ouml; bius strip; GRAPHENE; MECHANICS;
D O I
10.1088/1402-4896/ad4d27
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the properties of a two dimensional non-relativistic electron gas (TDEG) constrained on wires along a M & ouml;bius strip. We considered wires around the strip and along the transverse direction, across the width of the strip. For each direction, we investigate how the curvature modifies the electronic states and their corresponding energy spectrum. At the center of the strip, the wires around the surface form quantum rings whose spectrum depends on the strip radius a. For wires at the edge of the strip, the inner edge turns into the outer edge. Accordingly, the curvature yields localized states in the middle of the wire. Along the strip width, the effective potential exhibits a parity symmetry breaking leading to the localization of the bound state on one side of the strip.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dirac fermions on wires confined to the graphene Möbius strip
    Monteiro L.N.
    Almeida C.A.S.
    Silva J.E.G.
    Physical Review B, 2023, 108 (11)
  • [2] On the inductance of a Möbius strip
    Franek, Jaroslav
    Soka, Martin
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (03)
  • [3] The shape of a Möbius strip
    E. L. Starostin
    G. H. M. van der Heijden
    Nature Materials, 2007, 6 : 563 - 567
  • [4] Electronic states in ideal quantum wires
    不详
    ELECTRONIC STATES IN CRYSTALS OF FINITE SIZE: QUANTUM CONFINEMENT OF BLOCH WAVES, 2006, 212 : 117 - 142
  • [5] The Double Möbius Strip Studies
    Vesna Petresin
    Laurent-Paul Robert
    Nexus Network Journal, 2002, 4 (2) : 54 - 64
  • [6] A Möbius strip of single crystals
    Tanda S.
    Tsuneta T.
    Okajima Y.
    Inagaki K.
    Yamaya K.
    Hatakenaka N.
    Nature, 2002, 417 (6887) : 397 - 398
  • [7] Bending Paper and the Möbius Strip
    Sören Bartels
    Peter Hornung
    Journal of Elasticity, 2015, 119 : 113 - 136
  • [8] Number of triangulations of a Möbius strip
    Bazier-Matte, Veronique
    Huang, Ruiyan
    Luo, Hanyi
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (04): : 547 - 562
  • [10] Absorption modes of Möbius strip resonators
    Joshua K. Hamilton
    Ian R. Hooper
    Christopher R. Lawrence
    Scientific Reports, 11